
# **EZ-ZONE® PM**

# **User's Guide**



# **Integrated Controller Models**



1241 Bundy Boulevard., Winona, Minnesota USA 55987 Phone: +1 (507) 454-5300, Fax: +1 (507) 452-4507 http://www.watlow.com



0600-0059-0000 Rev. K

Made in the U.S.A.

### **Safety Information**

We use note, caution and warning symbols throughout this book to draw your attention to important operational and safety information.

A "NOTE" marks a short message to alert you to an important detail.

A "CAUTION" safety alert appears with information that is important for protecting your equipment and performance. Be especially careful to read and follow all cautions that apply to your application.

A "WARNING" safety alert appears with information that is important for protecting you, others and equipment from damage. Pay very close attention to all warnings that apply to your application.

The electrical hazard symbol,  $\triangle$  (a lightning bolt in a triangle) precedes an electric shock hazard CAUTION or WARNING safety statement.

| Symbol                                       | Explanation                                                                                                                                                                                                                         |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>^</u>                                     | CAUTION – Warning or Hazard that needs further explanation than label on unit can provide. Consult User's Guide for further information.                                                                                            |  |
|                                              | ESD Sensitive product, use proper grounding and handling techniques when installing or servicing product.                                                                                                                           |  |
|                                              | Unit protected by double/rein-<br>forced insulation for shock hazard<br>prevention.                                                                                                                                                 |  |
|                                              | Do not throw in trash, use proper recycling techniques or consult manufacturer for proper disposal.                                                                                                                                 |  |
| PC<br>PC                                     | Enclosure made of Polycarbonate material. Use proper recycling techniques or consult manufacturer for proper disposal.                                                                                                              |  |
| \                                            | Unit can be powered with either alternating current (ac) voltage or direct current (dc) voltage.                                                                                                                                    |  |
| CUL US 93RL LISTED PROCESS CONTROL EQUIPMENT | Unit is a Listed device per Underwriters Laboratories®. It has been evaluated to United States and Canadian requirements for Process Control Equipment. UL 61010 and CSA C22.2 No. 61010. File E185611 QUYX, QUYX7. See: www.ul.com |  |

| CULUS 2581<br>LISTED PROC. CONT. EQ. FOR MAZAMODUS LOCATIONS | Unit is a Listed device per Underwriters Laboratories®. It has been evaluated to United States and Canadian requirements for Hazardous Locations Class 1 Division II Groups A, B, C and D. ANSI/ISA 12.12.01-2007. File E184390 QUZW, QUZW7. See: www.ul.com |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CE                                                           | Unit is compliant with European Union directives. See Declaration of Conformity for further details on Directives and Standards used for Compliance.                                                                                                         |
| FM APPROVED                                                  | Unit has been reviewed and approved by Factory Mutual as a Temperature Limit Device per FM Class 3545 standard. See: www.fmglobal.com                                                                                                                        |
| <b>(1)</b>                                                   | Unit has been reviewed and approved by CSA International for use as Temperature Indicating-Regulating Equipment per CSA C22.2 No. 24. See: www.csa-international.org                                                                                         |
| DeviceNet.                                                   | Unit has been reviewed and approved by ODVA for compliance with DeviceNet communications protocol. See: www.odva.org                                                                                                                                         |
| EtherNet \( IP^* \) conformance tested                       | Unit has been reviewed and approved by ODVA for compliance with Ethernet/IP communications protocol. See: www.odva.org                                                                                                                                       |

#### Warranty

The EZ-ZONE® PM is manufactured by ISO 9001-registered processes and is backed by a three-year warranty to the first purchaser for use, providing that the units have not been misapplied. Since Watlow has no control over their use, and sometimes misuse, we cannot guarantee against failure. Watlow's obligations hereunder, at Watlow's option, are limited to replacement, repair or refund of purchase price, and parts which upon examination prove to be defective within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse or abuse. The purchaser must use Watlow parts to maintain all listed ratings.

#### **Technical Assistance**

If you encounter a problem with your Watlow controller, review your configuration information to verify that your selections are consistent with your application: inputs, outputs, alarms, limits, etc. If the problem persists, you can get technical assistance from your local Watlow representative (see back cover), by e-mailing your questions to <a href="winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-winter-wint

• Complete model number

- All configuration information
- User's Guide
- Factory Page

#### **Return Material Authorization (RMA)**

- 1. Call Watlow Customer Service, (507) 454-5300, for a Return Material Authorization (RMA) number before returning any item for repair. If you do not know why the product failed, contact an Application Engineer or Product Manager. All RMA's require:
  - Ship-to address
  - Bill-to address
  - Contact name
  - Phone number
  - Method of return shipment
  - Your P.O. number
  - Detailed description of the problem
  - Any special instructions
  - Name and phone number of person returning the product.
- 2. Prior approval and an RMA number from the Customer Service Department is required when returning any product for credit, repair or evaluation. Make sure the RMA number is on the outside of the carton and on all paperwork returned. Ship on a Freight Prepaid basis.
- 3. After we receive your return, we will examine it and try to verify the reason for returning it.
- 4. In cases of manufacturing defect, we will enter a repair order, replacement order or issue credit for material returned. In cases of customer mis-use, we will provide repair costs and request a purchase order to proceed with the repair work.
- 5. To return products that are not defective, goods must be be in new condition, in the original boxes and they must be returned within 120 days of receipt. A 20 percent restocking charge is applied for all returned stock controls and accessories.
- 6. If the unit is unrepairable, you will receive a letter of explanation. and be given the option to have the unit returned to you at your expense or to have us scrap the unit.
- 7. Watlow reserves the right to charge for no trouble found (NTF) returns.

The EZ-ZONE PM User's Guide is copyrighted by Watlow Winona, Inc., © August 2011 with all rights reserved. EZ-ZONE PM is covered by U.S. Patent Numbers:

6005577; D553095; D553096; D553097; D560175; D55766; and OTHER PATENTS PENDING

# TC

# **Table of Contents**

| Chapter 1: Overview                |
|------------------------------------|
| Standard Features and Benefits     |
| Optional Features and Benefits 4   |
| A Conceptual View of the PM 6      |
| Getting Started Quickly7           |
| Chapter 2: Install and Wire16      |
| Dimensions16                       |
| Installation20                     |
| Wiring                             |
| Chapter 3: Keys and Displays       |
| Attention Codes                    |
| Chapter 4: Home Page               |
| Conventions Used in the Menu Pages |
| Chapter 5: Operations Page49       |
| Analog Input Menu51                |
| Linearization Menu                 |
| Process Value Menu52               |
| Digital Input/Output Menu          |
| Limit Menu                         |
| Monitor Menu54                     |
| Control Loop Menu55                |
| Alarm Menu                         |
| Current Menu                       |
| Math Menu                          |
| Special Output Function Menu       |
| Profile Status Menu                |
| Chapter 6: Setup Page              |
| Analog Input Menu66                |
| Linearization Menu                 |
| Process Value Menu71               |
| Digital Input / Output Menu        |
| Limit Menu                         |
| Control Loop Menu                  |



# Table of Contents (cont.)

|     | Output Menu                               | . 81 |
|-----|-------------------------------------------|------|
|     | Alarm Menu                                | . 84 |
|     | Current Menu                              | . 87 |
|     | Math Menu                                 | . 88 |
|     | Special Output Function Menu              | . 89 |
|     | Function Key                              | . 90 |
|     | Global Menu                               | . 91 |
|     | Communications Menu                       | . 93 |
|     | Real Time Clock Menu                      | . 97 |
| Cha | pter 7: Profiling Page                    | . 99 |
|     | How to Setup and Start a Profile          | . 99 |
|     | Profiling Menu                            | 101  |
| Cha | pter 8: Factory Page                      | 107  |
|     | Custom                                    | 108  |
|     | Lock Menu                                 | 108  |
|     | Unlock Menu                               | 110  |
|     | Diagnostics Menu                          | 110  |
|     | Calibration Menu                          | 111  |
| Cha | pter 9: Features                          | 113  |
|     | Saving and Restoring User Settings        | 114  |
|     | Tuning the PID Parameters                 |      |
|     | Inputs                                    | 116  |
|     | Outputs                                   | 118  |
|     | Resetting a Tripped Limit                 | 119  |
|     | Control Methods                           | 120  |
|     | Alarms                                    | 125  |
|     | Current Sensing                           | 126  |
|     | Open Loop Detection                       | 126  |
|     | Programming the EZ Key/s                  | 126  |
|     | Using Password Security                   | 128  |
|     | Modbus - Using Programmable Memory Blocks | 129  |
|     | CIP - Communications Capabilities         | 129  |
|     | CIP Implicit Assemblies                   | 130  |
|     | Compact Assembly Class                    | 130  |
|     | Modifying Implicit Assembly Members       | 130  |

# TC

# Table of Contents (cont.)

|     | Profibus DP - (Decentralized Peripherals)                  | 30  |
|-----|------------------------------------------------------------|-----|
|     | Software Configuration                                     | 132 |
| Cha | pter 10: Applications                                      | 135 |
|     | Example 1: Single Loop Control                             | 35  |
|     | Example 2: Sensor Backup                                   | 35  |
|     | Example 3: Square Root                                     | 35  |
|     | Example 4: Ratio                                           | 35  |
|     | Example 5: Differential                                    | 36  |
|     | Example 6: Cascade                                         | 36  |
|     | Example 7: Wet Bulb / Dry Bulb                             | 36  |
|     | Example 8: Vaisala                                         | 37  |
|     | Example 9: Motorized Valve Control                         | 37  |
| Cha | apter 11: Appendix                                         | 39  |
|     | Troubleshooting Alarms, Errors and Control Issues 1        | 139 |
|     | Modbus - Programmable Memory Blocks                        | 142 |
|     | CIP Implicit Assembly Structures                           | 44  |
|     | Compact Class Assembly Structure                           | 45  |
|     | Specifications                                             | 52  |
|     | Ordering Information for PM Integrated Controller Models 1 | 155 |
|     | Index 1                                                    | 56  |
|     | How to Reach Us                                            | 162 |

1

# **Chapter 1: Overview**

The EZ-ZONE® PM takes the pain out of solving your thermal loop requirements.

Watlow's EZ-ZONE PM controllers offer options to reduce system complexity and the cost of controlloop ownership. You can order the EZ-ZONE PM as a PID controller or an over-under limit controller, or you can combine both functions in the PM Integrated Limit Controller. You now have the option to integrate a high-amperage power controller output, an over-under limit controller and a high-performance PID controller all in space-saving, panel-mount packages. You can also select from a number of serial communications options to help you manage system performance.

It just got a whole lot easier to solve the thermal requirements of your system. Because the EZ-ZONE PM controllers are highly scalable, you only pay for what you need. So if you are looking for a PID controller, an over-under limit controller or an integrated controller, the EZ-ZONE PM is the answer.

# Standard Features and Benefits

#### **Advanced PID Control Algorithm**

- TRU-TUNE+® Adaptive tune provides tighter control for demanding applications.
- Auto Tune for fast, efficient start ups

# **EZ-ZONE** configuration communications and software

• Saves time and improves the reliability of controller set up

# FM Approved Over-under Limit with Auxiliary Outputs

- Increases user and equipment safety for overunder temperature conditions
- To meet agency requirements, output 4 is the fixed limit output. Other outputs can be configured to mirror the limit output (4).

#### **Parameter Save & Restore Memory**

• Reduces service calls and down time

# Agency approvals: UL Listed, CSA, CE, RoHS, W.E.E.E. FM, SEMI F47-0200, Class 1, Div 2 rating on selected models

- Assures prompt product acceptance
- Reduces end product documentation costs

#### EZ-Key/s

• Programmable EZ-Key enables simple one-touch operation of repetitive user activities

#### Programmable Menu System

Reduces set up time and increases operator efficiency

#### Three-year warranty

Demonstrates Watlow's reliability and product support

#### Touch-safe Package

• IP2X increased safety for installers and operators

#### **P3T Armor Sealing System**

- NEMA 4X and IP66 offers water and dust resistance, can be cleaned and washed down (indoor use only)
- Backed up by UL 50 independent certification to NEMA 4X specification

#### Removable cage clamp wiring connectors

- Reliable wiring, reduced service calls
- Simplified installation

#### **Heat-Cool Operation**

• Provides application flexibility with accurate temperature and process control

# **Optional Features and Benefits**

#### **High-amperage Power Control Output**

- Drives 15 amp resistive loads directly
- Reduces component count
- Saves panel space and simplifies wiring
- Reduces the cost of ownership

#### **Integrated PID and Limit Controller**

- Reduces wiring time and termination complexity compared to connecting discrete products
- Decreases required panel space
- Lowers installation costs
- Increases user ad equipment safety for over/under temperature conditions

#### **Current Monitoring**

• Detects heater current flow and provides alarm indication of a failed output device or heater load

#### **Serial Communications Capabilities**

- Provides a wide range of protocol choices including Modbus<sup>®</sup> RTU, EtherNet/IP<sup>™</sup>, PCCC (Programmable Controller Communications Commands), DeviceNet<sup>™</sup>, Modbus<sup>®</sup> TCP, and Profibus DP
- Supports network connectivity to a PC or PLC

• 4 •

#### **Dual Channel Controller**

• For selected models provides two PID controllers in one space saving package

#### **Enhanced Control Capabilities**

 Easily handle complex process problems such as cascade, ratio, differential, square-root, motorized valve control without slidewire feedback, wet-bulb/ dry-bulb and compressor control

### **Full-featured Alarms**

- Improves operator recognition of system faults
- Control of auxiliary devices

#### **Ten Point Linearization Curve**

• Improves sensor accuracy

#### **Remote Set Point Operation**

• Supports efficient set point manipulation via a master control or PLC

#### **Retransmit Output**

• Supports industry needs for product process recording

#### **Profile Capability**

- Preprogrammed process control
- Ramp and soak programming with four files and 40 total steps

# A Conceptual View of the PM

The flexibility of the PM's software and hardware allows a large range of configurations. Acquiring a better understanding of the controller's overall functionality and capabilities while at the same time planning out how the controller can be used will deliver maximum effectiveness in your application.

It is useful to think of the controller in terms of functions; there are internal and external functions. An input and an output would be considered external functions where the PID calculation or a logic function would be an internal function. Information flows from an input function to an internal function to an output function when the controller is properly configured. A single PM controller can carry out several functions at the same time, for instance closed-loop control, monitoring for several different alarm situations, performing logical operations and operating switched devices, such as lights and motors. Each process needs to be thought out carefully and the controller's various functions set up properly.

### **Input Functions**

The inputs provide the information that any given programmed procedure can act upon. In a simple form, this information may come from an operator pushing a button or as part of a more complex procedure it may represent a remote set point being received from another controller.

Each analog input typically uses a thermocouple, thermistor or RTD to read the temperature of something. It can also read volts, current or resistance, allowing it to use various devices to read humidity, air pressure, operator inputs and others values. The settings in the Analog Input Menu (Setup Page) for each analog input must be configured to match the device connected to that input.

Each digital input reads whether a device is active or inactive. A PM with digital input-output (DIO) hardware can include up to eight DIO each of which can be used as either an input or an output. Each DIO must be configured to function as either an input or output with the Direction parameter in the Digital Input/Output Menu (Setup Page).

The Function or EZ Key on the front panel of the PM also operates as a digital input by toggling the function assigned to it in the Digital Input Function parameter in the Function Key Menu (Setup Page).

#### Internal Functions

Functions use input signals to calculate a value. A function may be as simple as reading a digital input to set a state to true or false, or reading a temperature to set an alarm state to on or off. Or, it could compare the temperature of a process to the set point and calculate the optimal power for a heater.

To set up an internal function, it's important to tell it what source, or instance, to use. For example,

an alarm may be set to respond to either analog input 1 or 2 (instance 1 or 2, respectively).

#### **Output Functions**

Outputs can perform various functions or actions in response to information provided by a function, such as operating a heater, driving a compressor, turning a light on or off, unlocking a door etc...

Assign an output to a Function in the Output Menu or Digital Input/Output Menu. Then select which instance of that function will drive the selected output. For example, you might assign an output to respond to alarm 4 (instance 4) or to retransmit the value of analog input 2 (instance 2).

You can assign more than one output to respond to a single instance of a function. For example, alarm 2 could be used to trigger a light connected to output 1 and a siren connected to digital output 5.

### **Input Events and Output Events**

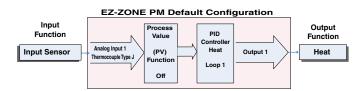
Input and output events are internal states that are used exclusively by profiles. The source of an event input can come from a real-world digital input or an output from another function. Likewise, event outputs may control a physical output such as an output function block or be used as an input to another function.

#### **Getting Started Quickly**

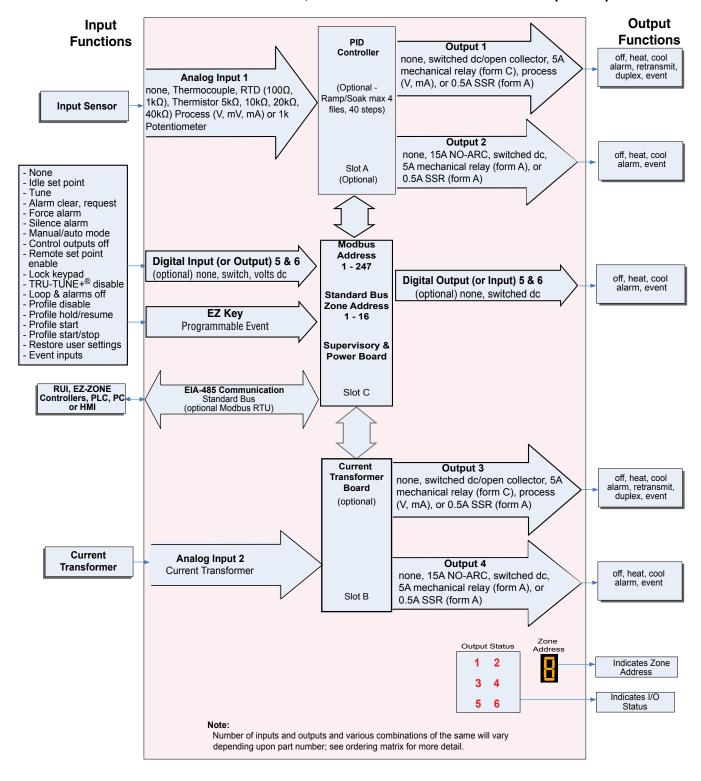
The PM control has a page and menu structure that is listed below along with a brief description of its purpose.

| Setup Page Push and hold the up and down keys (◆ ◆) for 6 seconds to enter. (See the Setup Page for further information)                        | Once received, a user would want to setup their control prior to operation. As an example, define the input type and set the output cycle time.                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operations Page Push and hold the up and down keys (  ) for 3 seconds to enter. (See the Operations Page for further information)               | After setting up the control to reflect your equipment, the Operations Page would be used to monitor or change runtime settings. As an example, the user may want to see how much time is left in a profile step or perhaps change the limit high set point. |
| Factory Page Push and hold the Infinity and the green Advance keys (♥ ●) for 6 seconds to enter. (See the Factory Page for further information) | For the most part the Factory Page has no bearing on the control when running. A user may want to enable password protection, view the control part number or perhaps create a custom Home Page.                                                             |
| Home Page The control is at the Home Page when initially powered up.                                                                            | Pushing the green Advance key will allow the user to see and change such parameters as the control mode, enable autotune and idle set point to name a few.                                                                                                   |
| Profile Page Push and hold the the green Advance key  for 6 seconds to enter. (See the Profile Page for fur- ther information)                  | If equipped with this feature a user would want to go here to configure a profile.                                                                                                                                                                           |

The default PM loop configuration out of the box is shown below:


- Heat algorithm set for PID, Cool set to off
- Output 1 set to Heat
- Control mode set to Auto
- Set point set to 75 °F

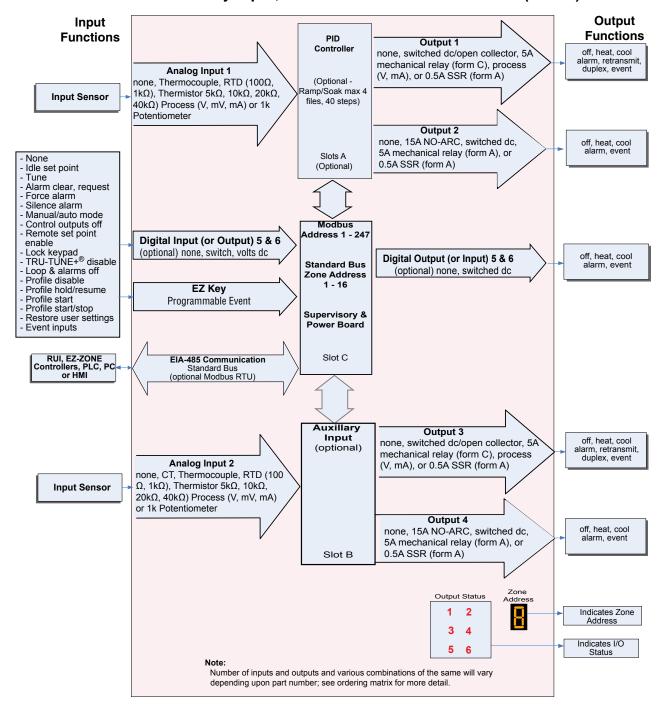
If you are using the input type shown above, simply connect your input and output devices to the control. Power up the control and push the up arrow **O** on the face of the control to change the set point from


the default value of 75 °F to the desired value. As the Set Point increases above the Process Value, output 1 will come on and it will now begin driving your output device. The PV function as shown in the graphic below is only available with PM4/8/9 models.

#### Note

The output cycle time will have a bearing on the life of mechanical relay outputs and can be different based on the type of output ordered. The output cycle time can be changed in the Setup Page under the Output Menu.

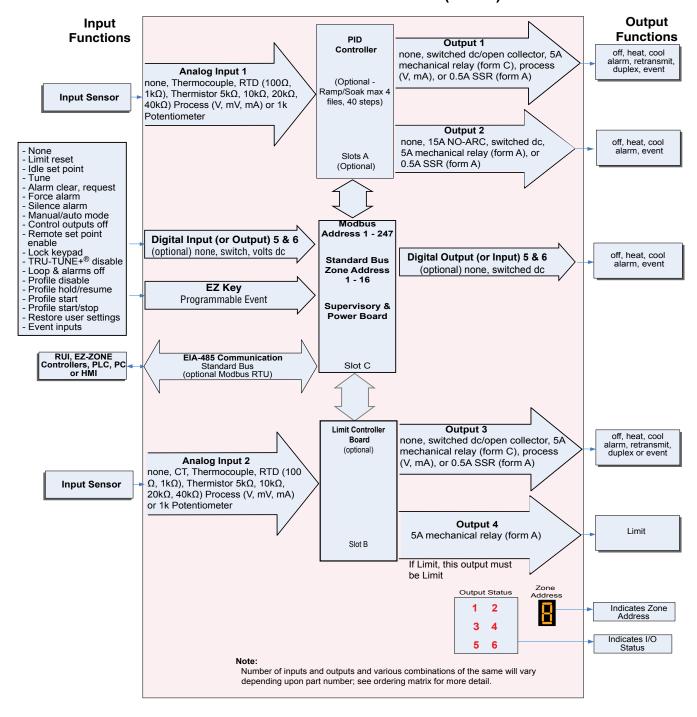



# EZ-ZONE® PM Integrated Model 1/16 DIN System Diagram With a Current Transformer, Without Communications Card (Slot B)



#### **Current Monitoring**

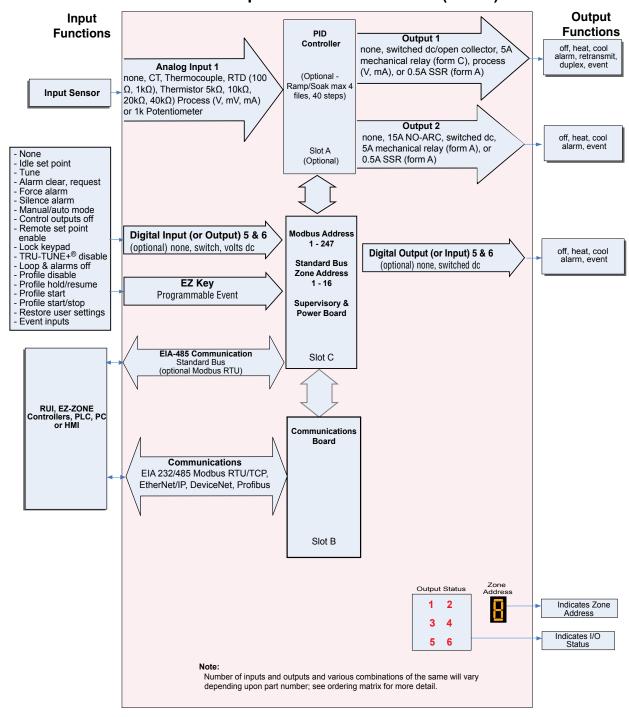
- detects heater current flow
- provides an alarm indication of a failed-load issue.


# EZ-ZONE® PM Integrated Model 1/16 DIN System Diagram With Auxillary Input, Without Communications Card (Slot B)



#### **Remote Set Point Operation**

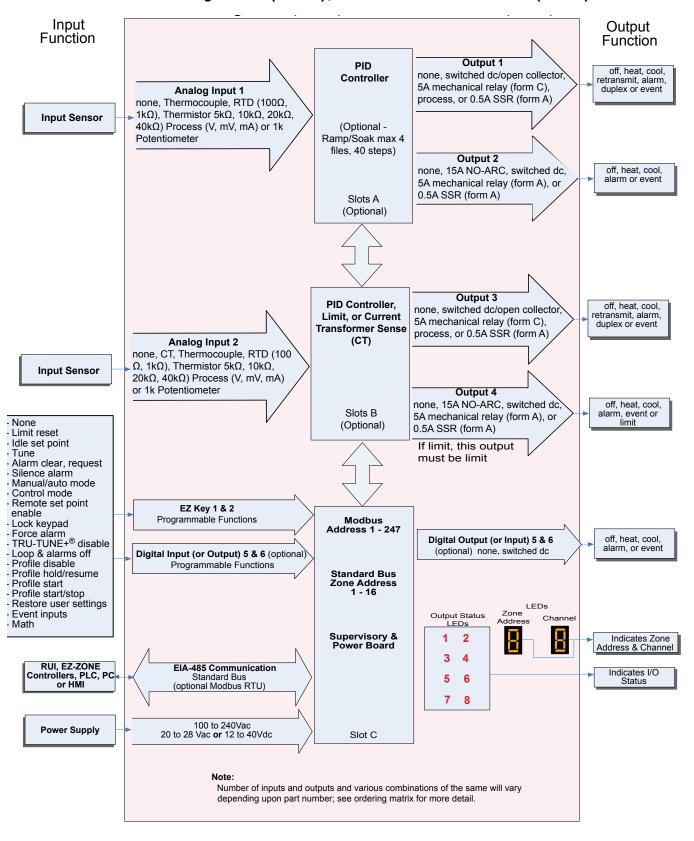
• Supports efficient set point manipulation from a remote device, such as a master control or PLC.


# EZ-ZONE® PM Integrated Model 1/16 DIN With Limit, System Diagram Without Communications Card (Slot B)

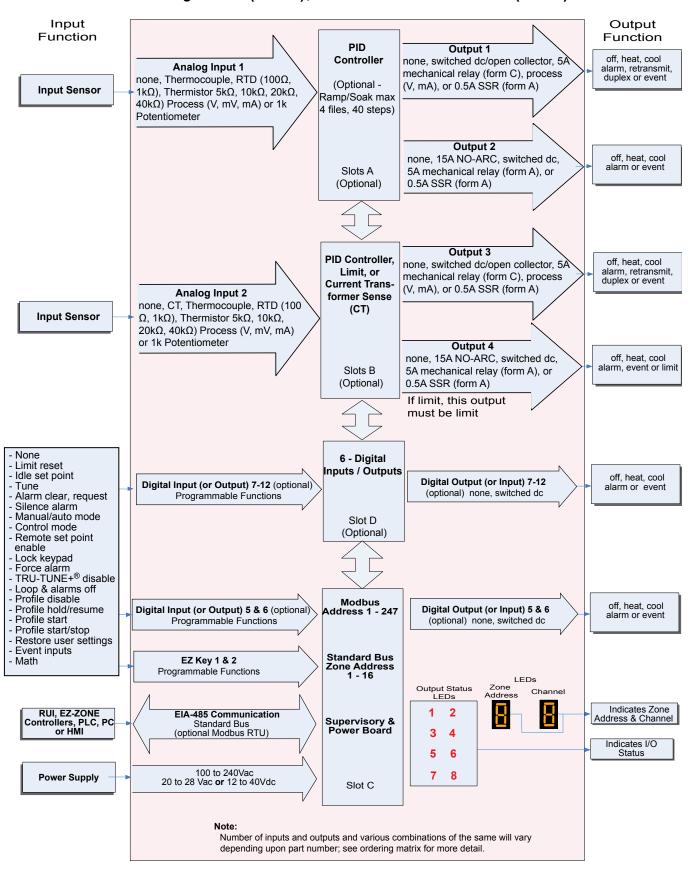


#### **Integrated PID and Limit Controller**

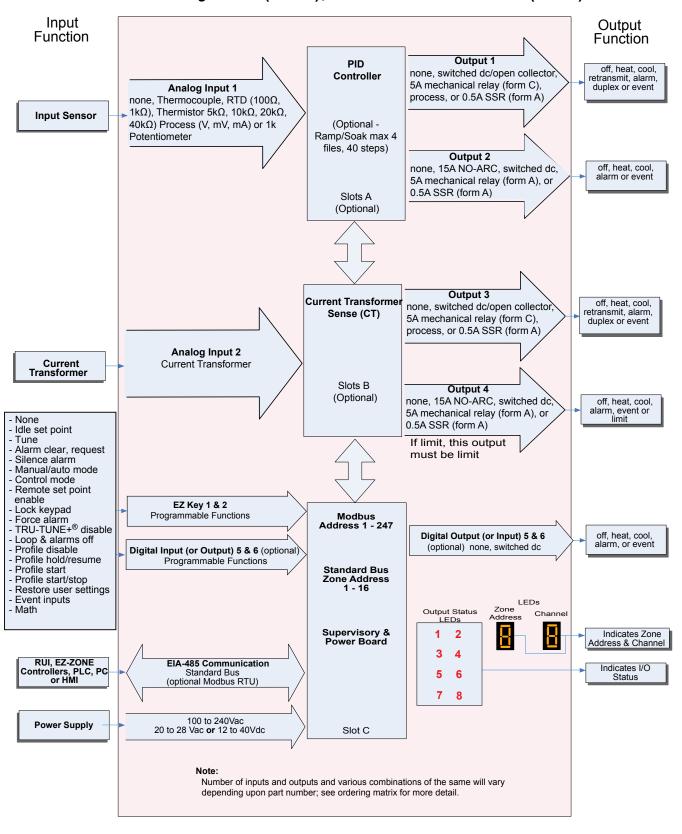
- Reduces wiring time and termination complexity compared to connecting separate products
- Reduces panel space
- Reduces installation costs
- Increases dependability with backup control sensor operation
- Increases user and equipment safety for over-under temperature conditions


# EZ-ZONE® PM Integrated Model 1/16 DIN System Diagram with Expanded Communications (Slot B)

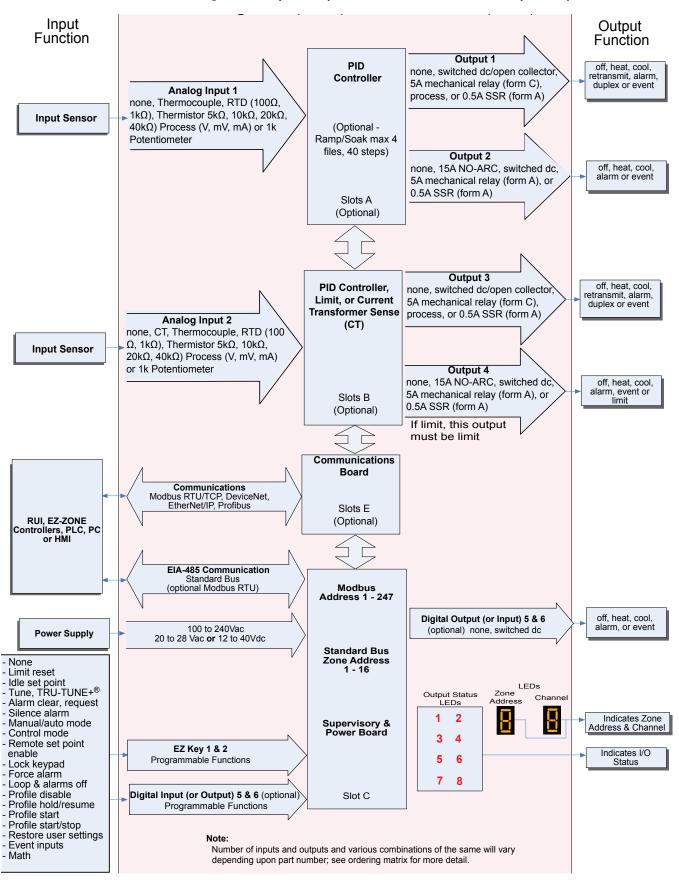



#### **Serial Communication Capabilities**

- Supports network connectivity to a PC or PLC
- Available in a wide range of protocol choices, including Modbus RTU, EtherNet/IPTM, Modbus TCP


# EZ-ZONE® PM Integrated Model 1/8 and 1/4 DIN System Diagram Without 6 Digital I/O (slot D), Without Communications (slot E)

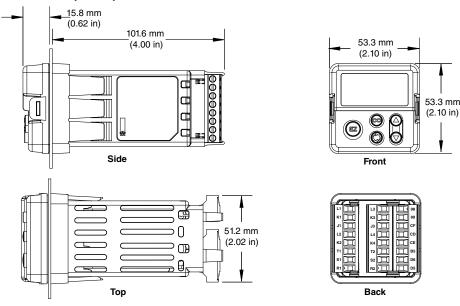



# EZ-ZONE® PM Integrated Model 1/8 and 1/4 DIN System Diagram With 6 Digital I/O (slot D), Without Communications (slot E)

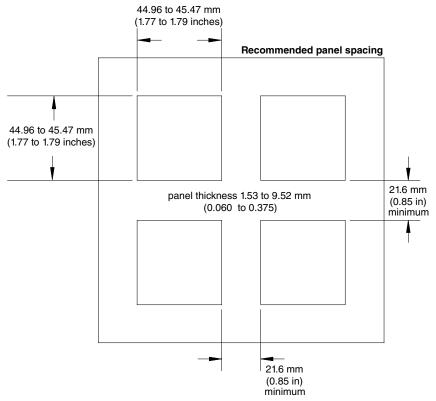


# EZ-ZONE® PM Integrated Model 1/8 and 1/4 DIN with CT System Diagram Without 6 Digital I/O (slot D), Without Communications (slot E)

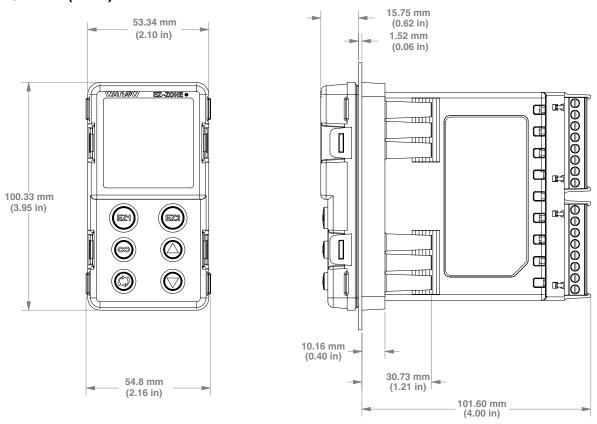



# EZ-ZONE® PM Integrated Model 1/8 and 1/4 DIN System Diagram Without 6 Digital I/O (slot D), With Communications (slot E)

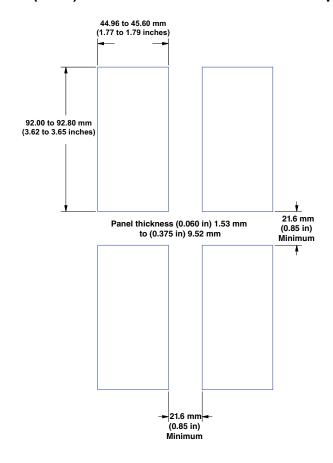



# Chapter 2: Install and Wire

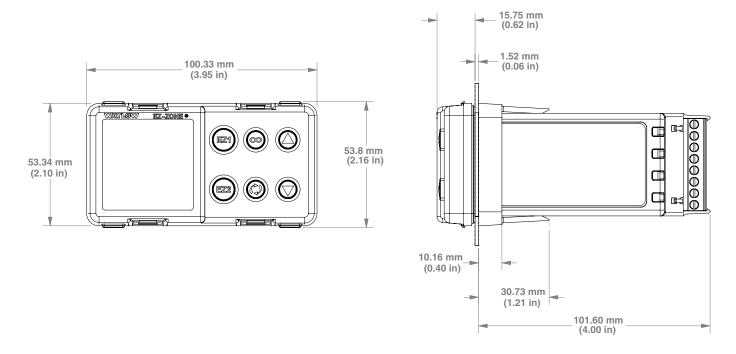
# **Dimensions**


# 1/16 DIN (PM6)

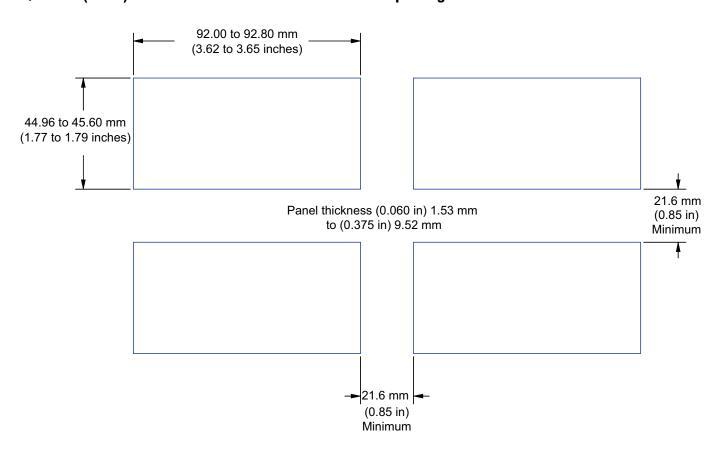



# 1/16 DIN (PM6) Recommended Panel Spacing

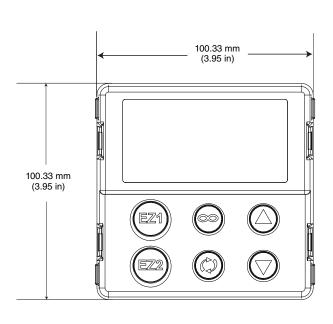


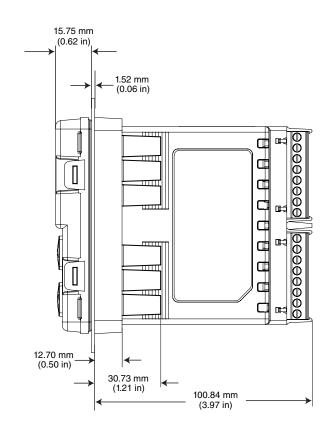

# 1/8 DIN (PM8) Vertical Dimensions



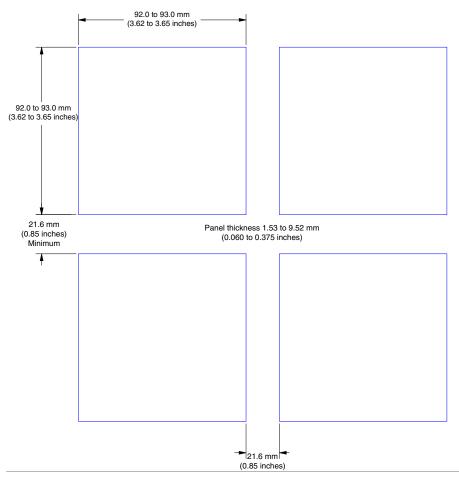

# 1/8 DIN (PM8) Vertical Recommended Panel Spacing



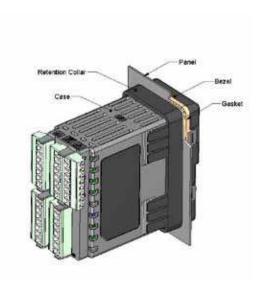

# 1/8 DIN (PM9) Horizontal Dimensions




# 1/8 DIN (PM9) Horizontal Recommended Panel Spacing




# 1/4 DIN (PM4) Dimensions






# 1/4 DIN (PM4) Recommended Panel Spacing



### Installation



- 1. Make the panel cutout using the mounting template dimensions in this chapter.
  - Insert the case assembly into the panel cutout.
- 2. While pressing the case assembly firmly against the panel, slide the mounting collar over the back of the controller.
  - If the installation does not require a NEMA 4X seal, simply slide together until the gasket is compressed.



Slide the mounting collar over the back of the controller.



Place the blade of a screwdriver in any of the corner of the mounting collar assembly.

3. For a NEMA 4X (UL50, IP66) seal, alternately place and push the blade of a screwdriver against each of the the four corners of the mounting collar assembly. Apply pressure to the face of the controller while pushing with the screwdriver. Don't be afraid to apply enough pressure to properly install the controller. The seal system is compressed more by mating the mounting collar tighter to the front panel (see pictures above). If you can move the case assembly back and forth in the cutout, you do not have a proper seal.

The tabs on each side of the mounting collar have teeth that latch into the ridges on the sides of the controller. Each tooth is staggered at a different depth from the front so that only one of the tabs, on each side, is locked onto the ridges at a time.

#### Note:

There is a graduated measurement difference between the upper and lower half of the display to the panel. In order to meet the seal requirements mentioned above, ensure that the distance from the front of the top half of the display to the panel is 16 mm (0.630 in.) or less, and the distance from the front of the bottom half and the panel is 13.3 mm (0.525 in.) or less.

# Removing the Mounted Controller from Its Case

1. From the controller's face, pull out the tabs on each side until you hear it click.





Pull out the tab on each side until you hear it click.

Grab the unit above and below the face and pull forward.

2. Grab the unit above and below the face with two hands and pull the unit out. On the PM4/8/9 controls slide a screwdriver under the pry tabs and turn.

# Warning:

- This equipment is suitable for use in class 1, div. 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A.
- WARNING EXPLOSION HAZARD. Substitution of component may impair suitability for class 1, div. 2.
- WARNING EXPLOSION HAZARD. Do not disconnect equipment unless power has been switched off or the area is known to be nonhazardous.

#### **Returning the Controller to its Case**

1. Ensure that the orientation of the controller is correct and slide it back into the housing.

#### Note:

The controller is keyed so if it feels that it will not

slide back in do not force it. Check the orientation again and reinsert after correcting.

2. Using your thumbs push on either side of the controller until both latches click.

#### **Chemical Compatibility**

This product is compatible with acids, weak alkalis, alcohols, gamma radiation and ultraviolet radiation.

This product is not compatible with strong alkalis, organic solvents, fuels, aromatic hydrocarbons, chlorinated hydrocarbons, esters and keytones.

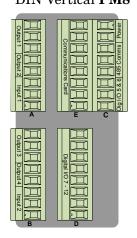


All electrical power to the controller and controlled circuits must be disconnected before removing the controller from the front panel or disconnecting other wiring.

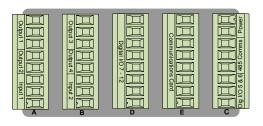
Failure to follow these instructions may cause an electrical shock and/or sparks that could cause an explosion in class 1, div. 2 hazardous locations.

# Wiring

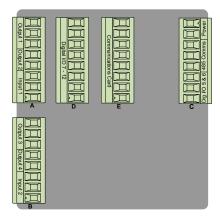
| Slot           |          | Slo            |          | Slot D     | Slot E            |                                                                                                                                                       |                                                                                                     |
|----------------|----------|----------------|----------|------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| T              |          |                |          |            |                   |                                                                                                                                                       |                                                                                                     |
| T              |          | Inputs         |          |            | Terminal Function | Configuration                                                                                                                                         |                                                                                                     |
|                | L        | 2              | 1        | 7 - 12     |                   |                                                                                                                                                       |                                                                                                     |
| R              | 1        | T:<br>S:       | 2        |            |                   | S2 (RTD) or current + S3 (RTD), thermocouple -, current - or volts -, potentiometer wiper, thermistor S1 (RTD), thermocouple + or volts +, thermistor | Universal / Thermistor Input input 1: all configurations input 2: PM [R,L]                          |
|                |          | T              |          |            |                   | mA ac<br>mA ac                                                                                                                                        | Current Transformer PM [T]                                                                          |
|                |          |                |          | В7         |                   | Common                                                                                                                                                | Digital Inputs                                                                                      |
|                |          |                |          | D7         |                   | digital input or output                                                                                                                               | PM[4,8,9] [C, D]                                                                                    |
|                |          |                |          | D8         |                   | digital input or output                                                                                                                               |                                                                                                     |
|                |          |                |          | D9         |                   | digital input or output                                                                                                                               |                                                                                                     |
|                |          |                |          | D10        |                   | digital input or output                                                                                                                               |                                                                                                     |
|                |          |                |          | D11        |                   | digital input or output                                                                                                                               |                                                                                                     |
|                |          |                |          | D12        |                   | digital input or output                                                                                                                               |                                                                                                     |
|                |          |                |          | <b>Z</b> 7 |                   | Internal Supply                                                                                                                                       |                                                                                                     |
|                |          |                | Outp     | uts        |                   | Terminal Function                                                                                                                                     | Configuration                                                                                       |
| 1              | 2        | 3              | 4        | 7 - 12     |                   |                                                                                                                                                       |                                                                                                     |
| X1<br>W1<br>Y1 |          | X3<br>W3<br>Y3 |          |            |                   | common (Any switched dc output can use<br>this common.)<br>dc- (open collector)<br>dc+                                                                | Switched dc/open collector output 1: PM [C] output 3: PM [C]                                        |
|                | W2<br>Y2 |                | W4<br>Y4 |            |                   | dc-<br>dc+                                                                                                                                            | Switched dc<br>output 2: PM [C]<br>output 4: PM [C]                                                 |
| F1<br>G1<br>H1 |          | F3<br>G3<br>H3 |          |            |                   | voltage or current -<br>voltage +<br>current +                                                                                                        | Universal Process output 1: PM [F] output 3: PM [F]                                                 |
| L1<br>K1<br>J1 |          | L3<br>K3<br>J3 |          |            |                   | normally open<br>common<br>normally closed                                                                                                            | Mechanical Relay 5 A, Form C output 1: PM [E] output 3: PM [E]                                      |
|                | L2<br>K2 |                | L4<br>K4 |            |                   | normally open common                                                                                                                                  | NO-ARC 15 A, Form A output 2: PM [H] [H*]                                                           |
|                | L2<br>K2 |                | L4<br>K4 |            |                   | normally open<br>common                                                                                                                               | Mechanical Relay 5 A, Form A output 2: PM [J] output 4: PM [J]                                      |
| L1<br>K1       | L2<br>K2 | L3<br>K3       | L4<br>K4 |            |                   | normally open common                                                                                                                                  | Solid-state Relay 0.5 A, Form A output 1: PM [K] output 2: PM [K] output 3: PM [K] output 4: PM [K] |
|                |          |                |          | В7         |                   | Common                                                                                                                                                | Digital Outputs                                                                                     |
|                |          |                |          | D7         |                   | switched dc/open collector output                                                                                                                     | PM[4,8,9] [C, D]                                                                                    |
|                |          |                |          | D8         |                   | switched dc/open collector output                                                                                                                     |                                                                                                     |
|                |          |                |          | D9         |                   | switched dc/open collector output                                                                                                                     |                                                                                                     |
|                |          |                |          | D10        |                   | switched dc/open collector output                                                                                                                     |                                                                                                     |
|                |          |                |          | D11        |                   | switched dc/open collector output                                                                                                                     |                                                                                                     |
|                |          |                |          | D12        |                   | switched dc/open collector output                                                                                                                     |                                                                                                     |
|                |          |                |          | <b>Z</b> 7 |                   | Internal Supply                                                                                                                                       |                                                                                                     |
| Slo            | t A      | Slo            | t B      | Slot D     | Slot E            |                                                                                                                                                       |                                                                                                     |


<sup>\*</sup> Output 4, PM4, PM8 and PM9 only

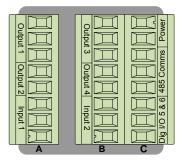
|        | Commun                                       | ications |                                              | Terminal Function                                                                                                                                                                                                                                                                                                                                                                                             | Configuration                                                                                                       |
|--------|----------------------------------------------|----------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|        | CB<br>CA<br>CC<br>CB<br>CA<br>C5<br>C3<br>C2 |          | CB<br>CA<br>CC<br>CB<br>CA<br>C5<br>C3<br>C2 | Modbus RTU EIA-485 T+/R+ Modbus RTU EIA-485 T-/R- Modbus RTU EIA-485 common Modbus RTU EIA-485 T+/R+ Modbus RTU EIA-485 T-/R- Modbus RTU EIA-232 common Modbus RTU EIA-232 to DB9 pin 2 Modbus RTU EIA-232 to DB9 pin 3                                                                                                                                                                                       | Modbus RTU 232/485 Communications Slot B: PM6 [2] A A A Slot E: PM[4,8,9] [2]                                       |
|        | V+<br>CH<br>SH<br>CL<br>V-                   |          | V+<br>CH<br>SH<br>CL<br>V-                   | DeviceNet <sup>™</sup> power Positive side of DeviceNet <sup>™</sup> bus Shield interconnect Negative side of DeviceNet <sup>™</sup> bus DeviceNet <sup>™</sup> power return                                                                                                                                                                                                                                  | DeviceNet <sup>TM</sup> Communications<br>Slot B: PM6 [ <b>5</b> ] A A A<br>Slot E: PM[ <b>4,8,9</b> ] [ <b>5</b> ] |
|        | E8<br>E7<br>E6<br>E5<br>E4<br>E3<br>E2<br>E1 |          | E8<br>E7<br>E6<br>E5<br>E4<br>E3<br>E2<br>E1 | EtherNet/IP <sup>TM</sup> and Modbus TCP unused EtherNet/IP <sup>TM</sup> and Modbus TCP unused EtherNet/IP <sup>TM</sup> and Modbus TCP receive - EtherNet/IP <sup>TM</sup> and Modbus TCP unused EtherNet/IP <sup>TM</sup> and Modbus TCP unused EtherNet/IP <sup>TM</sup> and Modbus TCP receive + EtherNet/IP <sup>TM</sup> and Modbus TCP transmit - EtherNet/IP <sup>TM</sup> and Modbus TCP transmit - | Ethernet 10/100 supporting EtherNet/IP <sup>TM</sup> and Modbus TCP Slot B: PM6 [3] A A A Slot E: PM[4,8,9] [3]     |
|        | VP B A DG trB B A trA                        |          | VP B A DG trB B A trA                        | Voltage Potential EIA-485 T+/R+ EIA-485 T-/R- Digital ground (common) Termination resistor B EIA-485 T+/R+ EIA-485 T-/R- Termination resistor A                                                                                                                                                                                                                                                               | Profibus Communications Slot B: PM6 [6] A A A Slot E: PM [4, 8, 9] [6] A A A A A A                                  |
| Slot A | Slot B                                       | Slot D   | Slot E                                       |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                     |


# Terminal Definitions for Slot C.

| Slot C         | Terminal Function                                                                                                                 | Configuration                 |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 98<br>99       | Power input: ac or dc+<br>Power input: ac or dc-                                                                                  | all                           |
| CC<br>CA<br>CB | Standard Bus or Modbus RTU EIA-485 common<br>Standard Bus or Modbus RTU EIA-485 T-/R-<br>Standard Bus or Modbus RTU EIA-485 T+/R+ | Standard Bus or Modbus PM [1] |
| CF<br>CD<br>CE | Standard Bus EIA-485 common<br>Standard Bus EIA-485 T-/R-<br>Standard Bus EIA-485 T+/R+                                           | PM [ <b>A,D,2,3,5</b> ]       |
| B5<br>D6<br>D5 | Digital input-output common Digital input or output 6 Digital input or output 5                                                   | PM _ [2] PM _ [4]             |


# Back View Slot Orientation 1/8 DIN Vertical PM8

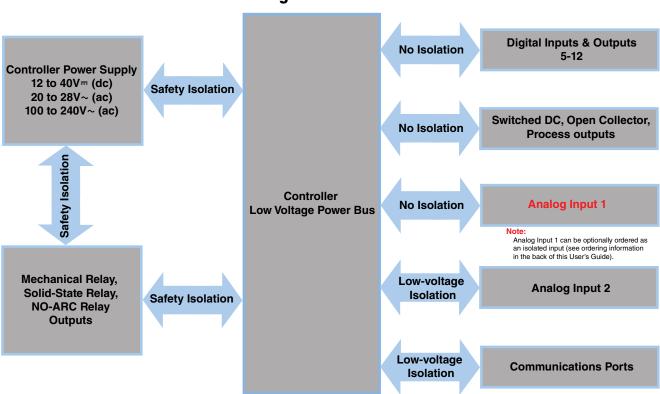



# Back View Slot Orientation 1/8 DIN Horizontal PM9



#### Back View Slot Orientation 1/4 DIN Horizontal PM4




#### Back View Slot Orientation 1/16 DIN PM6



#### Note:

Slot B above can also be configured with a communications card.

# **PM Integrated Isolation Block**



Low-voltage Isolation: 42V peak Safety Isolation: 2300V~ (ac)



Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

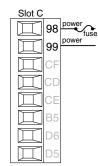
# Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:

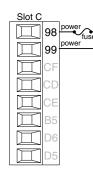



Explosion Hazard - Substitution of component may impair suitability for CLASS I, DIVISION 2.

#### Warning:



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.


#### Low Power



- Minimum/Maximum Ratings
- 12 to 40V= (dc)
- 20 to 28V~ (ac) Semi Sig F47
- 47 to 63 Hz
- 14VA maximum power consumption (PM4, 8 and 9)
- 10VA maximum power consumption (PM6)

PM\_\_[3,4]\_\_-\_\_\_

## **High Power**



- Minimum/Maximum Ratings
- 85 to 264V~ (ac)
- 100 to 240V~ (ac) Semi Sig F47
- 47 to 63 Hz
- 14VA maximum power consumption (PM4, 8 and 9)
- 10VA maximum power consumption (PM6)

PM\_\_[1,2]\_\_--\_\_\_

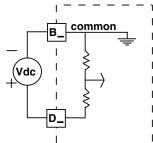
### Digital Input 5 - 6

#### Slot C 98 99 CF CD CE common B5 DC Input D6 DC Input D5

#### **Digital Input**

- Update rate 10 Hz
- Dry contact or dc voltage

#### **DC Voltage**


- Input not to exceed 36V at 3 mA
- Input active when > 3V @ 0.25 mA
- Input inactive when < 2V

#### **Dry Contact**


- Input inactive when  $> 500 \Omega$
- Input active when  $< 100 \Omega$
- maximum short circuit 13 mA

PM \_ \_ [2,4] \_ \_-\_ \_

### Voltage Input



#### **Dry Contact**





Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

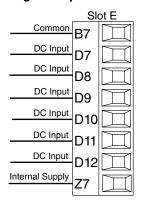
#### Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:

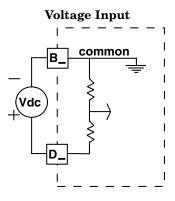


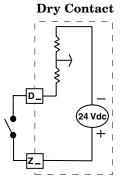

Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

### Warning:

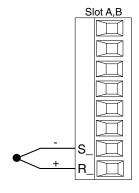


Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.


#### Digital Input 7 - 12



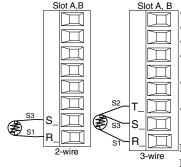

Digital Input Event Conditions


- Dry Contact
  - Input inactive when >  $100 \text{K}\Omega$
  - Input active when  $< 50\Omega$
- Voltage
  - Input inactive when < 2V
  - Input active when > 3V
- Six user configurable digital inputs/outputs per slot
- Slot E DIO 7-12

PM [4,6,8] \_ \_ \_ - [C,D] \_ \_ \_ \_






#### Input 1, 2 Thermocouple



- $2K \Omega$  maximum source resistance
- >20  $M\Omega$  input impedance
- 3 microampere open-sensor detection
- Thermocouples are polarity sensitive. The negative lead (usually red) must be connected to S1.
- To reduce errors, the extension wire for thermocouples must be of the same alloy as the thermocouple.

\*PM(4, 8 and 9) only

# Input 1, 2 RTD



- platinum, 100 and 1,000 Ω @ 0°C
- calibration to DIN curve (0.00385  $\Omega/\Omega/^{\circ}$ C)
- 20 Ω total lead resistance
- RTD excitation current of 0.09 mA typical. Each ohm of lead resistance may affect the reading by 0.03°C.
- For 3-wire RTDs, the S1 lead (usually white) must be connected to R1.
- For best accuracy use a 3-wire RTD to compensate for leadlength resistance. All three lead wires must have the same resistance.

Input 1: PM \_ [C,R,B\*] \_ \_ \_ - \_ \_ \_ (S1/R1),(T1/S1/R1)
Input 2: PM \_ \_ \_ - \_ [C,R,L] \_ \_ \_ (S2/R2),(T2/S2/R2)

\*PM(4, 8 and 9) only



Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

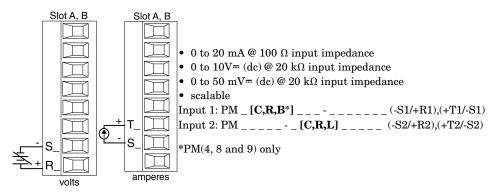
# Warning:



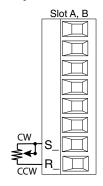
Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:




Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

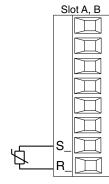
#### Warning:




Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

### Input 1, 2 Process




### Input 1,2 Potentiometer

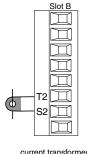


• Use a 1 k $\Omega$  potentiometer.

\*PM(4, 8 and 9) only

# Input 1, 2 Thermistor




- >20 M $\Omega$  input impedance
- 3 microampere open-sensor detection

Input 1: PM \_ [J,N,E] \_ \_ \_ \_ \_ (S1/R1)
Input 2: PM \_ \_ \_ - \_ [J,P,M] \_ \_ \_ (S2/R2)

#### Note:

For input 1, option E is available with PM4, 8 and 9 models only.

# **Input 2 Current Transformer**



(input 2)

- Input range is 0 to 50 mA.
- current transformer part number: 16-0246
- 100  $\Omega$  input impedance
- response time: 1 second maximum
- accuracy +/-1 mA typical PM \_ \_ \_ \_ [T] \_ \_ \_ \_



Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

#### Warning:



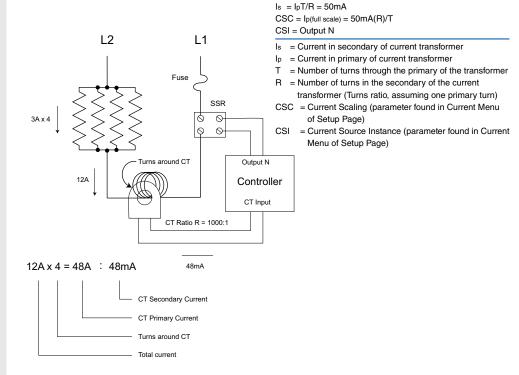
Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:

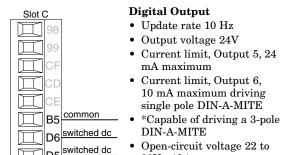


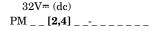
Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

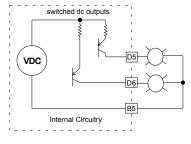
# Warning:




Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.


#### Quencharc Note:


Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.


### **Example: Using a Current Transformer**



### Digital Output 5 - 6







\* Output 5 only

28 •



Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

# Warning:



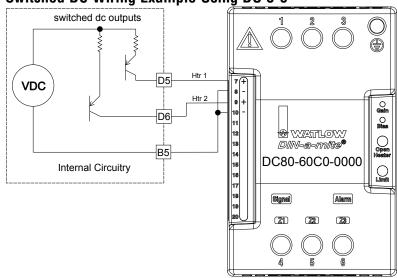
Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:

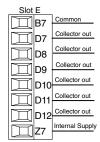


Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

### Warning:



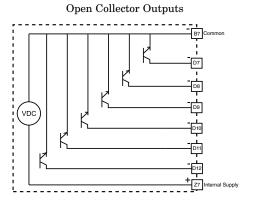

Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.


#### **Quencharc Note:**

Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.

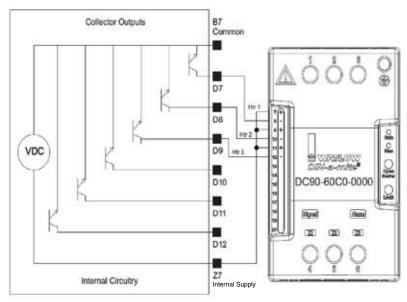
Switched DC Wiring Example Using DO 5-6




#### Digital Output 7 - 12



- Maximum switched voltage is 32V= (dc)
- Internal supply provides a constant power output of 750mW
   Maximum output sink
- Maximum output sink current per output is 1.5A (external class 2 or \*SELV supply required)
- Total sink current for all outputs not to exceed 8A
- Do not connect outputs in parallel


PM [4,6,8] \_ \_ \_ - [C,D] \_

\*Saftey Extra Low Voltage



Internal Circuitry

# Switched DC Wiring Example Using DO 7-12





Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

#### Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:



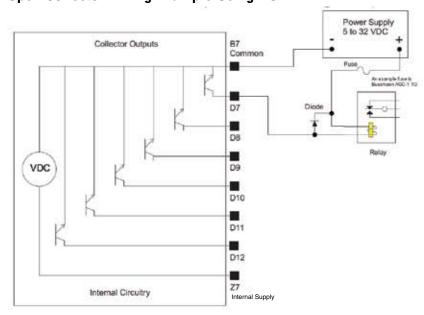
Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

#### Warning:



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

#### **Quencharc Note:**


Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.

#### Note:

As a switched DC output; this output is a constant current output delivering 750 mW, current limited to 400 mA. The internal supply does have a maximum open circuit voltage of 22 VDC and minimum open circuit voltage of 19 VDC. Pin Z7 is shared to all digital outputs. This type of output is meant to drive solid state relays, not mechanical relays.

As an open collector output, use an external power supply with the negative wired to B7, the positive to the coil of a pilot mechanical relay and the other side of the coil wired to D\_. Each open collector output can sink 1.5 A with the total for all open collector outputs not exceeding 8 amperes. Ensure that a kickback diode is reversed wired across the relay coil to prevent damage to the internal transistor.

#### Open Collector Wiring Example Using DO 7-12





Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

# Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:



Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

#### Warning:



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

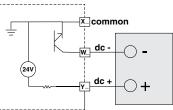
#### **Quencharc Note:**

Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.

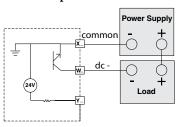
### Output 1, 3 Switched DC/Open Collector

# Slot A, B Switched DC

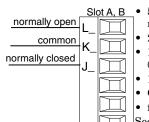



- 30 mA dc maximum supply current
- Short circuit limited to <50 mA
- 22 to 32V= (dc) open circuit voltage
- Use dc- and dc+ to drive external solid-state relay.
- DIN-A-MITE compatible
- Single-pole: up to 4 in parallel or 4 in series
- 2-pole: up to 2 in parallel or 2 in series
- 3-pole: up to 2 in series

#### **Open Collector**


- 100 mA maximum output current sink
- 30V= (dc) maximum supply voltage
- Any switched dc output can use the common terminal.
- Use an external power supply to control a dc load, with the load positive to the positive of the power supply, the load negative to the open collector and common to the power supply negative

Output 1: (X1,-W1,+Y1)
PM \_ \_ \_ [C] \_ - \_ \_ \_ \_ \_
Output 3: (X3,-W3,+Y3)
PM \_ \_ \_ - \_ \_ [C] \_ \_ \_ \_


#### Switched DC

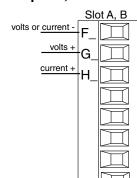


#### **Open Collector**



# Output 1, 3 Mechanical Relay, Form C



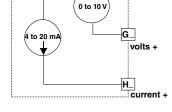

- 20 mA at 24V minimum load
- 125 VA pilot duty at 120/240V~ (ac), 25 VA at 24V~ (ac)
- 100,000 cycles at rated load
- Output does not supply power.
- for use with ac or dc

See Quencharc note.
Output 1: (L1,K1,J1)
PM \_ \_ \_ [E] \_ - \_ \_ \_ \_ \_

Output 3: (L3,K3,J3)
PM \_\_\_\_- [E] \_\_\_\_

normally open
common

# **Output 1, 3 Universal Process**




- 0 to 20 mA into 800  $\Omega$  maximum load
- 0 to 10V= (dc) into 1 kΩ minimum load
- scalable

• 31 •

- output supplies power
- cannot use voltage and current outputs at same time
- Output may be used as retransmit or control.

Output 1: (F1,G1,H1)
PM \_ \_ \_ [F] \_ - \_ \_ \_ \_
Output 3: (F3,G3,H3)
PM \_ \_ \_ - \_ - \_ [F] \_ \_ \_ \_



F\_

negative



Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

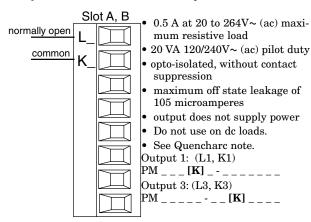
#### Warning:

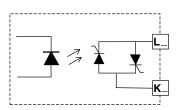


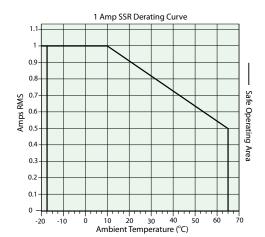
Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:

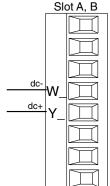



Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.


#### Warning:

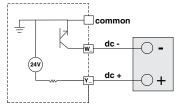



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.


# Output 1, 3 Solid-State Relay, Form A








# Output 2, 4 Switched DC



- 10 mA DC maximum supply current
- short circuit limited to <50 mA
- 22 to 32V= (dc) open circuit voltage
- use dc- and dc+ to drive external solid-state relay
- DIN-A-MITE compatible
- single-pole: up to 2 in series, none in parallel

Output 2: (-W2, +Y2)
PM \_ \_ \_ [C] - \_ \_ \_ \_
Output 4: (-W4, +Y4)
PM \_ \_ \_ - \_ [C] \_ \_ \_





Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

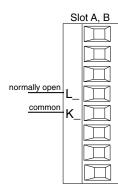
# Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:



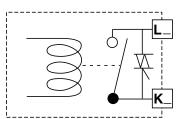

Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

#### Warning:

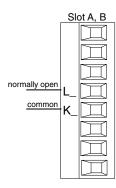


Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

# Output 2, 4 NO-ARC Relay, Form A



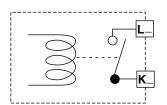

- 15 A at 85 to 264V~ (ac) resistive load only
- 2,000,000 cycle rating for NO-ARC circuit
- 100 mA minimum load
- 2 mA maximum off state leakage
- · Do not use on dc loads.
- Output does not supply power.


Output 2: (L2, K2) PM \_ \_ \_ [H] - \_ \_ \_

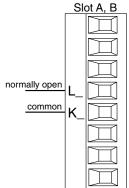
Output 4: (L4, K4)

PM [4, 8, 9] \_ \_ \_ - [H] \_ \_ \_




# Output 2, 4 Mechanical Relay, Form A




- 20 mA at 24V minimum load
- 125 VA pilot duty @ 120/240V~ (ac), 25 VA at 24V~ (ac)
- 100,000 cycles at rated load
- Output does not supply power.
- for use with ac or dc

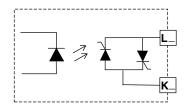
See Quencharc note.
Output 2: (L2, K2)

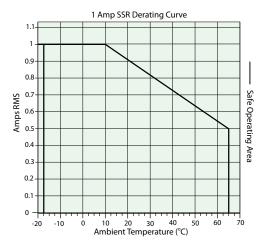
PM \_ \_ \_ [**J**] - \_ \_ \_ \_ \_ Output 4: (L4, K4)
PM \_ \_ \_ - \_ \_ [**J**] \_ \_ \_



# Output 2, 4 Solid-State Relay, Form A




- 0.5 A at 20 to 264V~ (ac) maximum resistive load
- 20 VA 120/240V~ (ac) pilot duty
- opto-isolated, without contact suppression
- maximum off state leakage of 105 microamperes
- Output does not supply power.
- Do not use on dc loads.


See Quencharc note.

Output 2: (L2, K2) PM \_ \_ \_ [K] - \_ \_ \_ \_ \_

Output 4: (L4, K4)

PM \_ \_ \_ \_ - **\_ \_ \_ [K]** \_ \_ \_







Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

#### Warning:

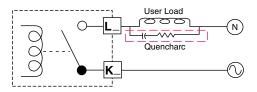


Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

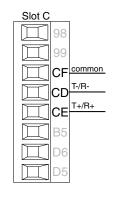
#### Warning:



Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.


#### Warning:




Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

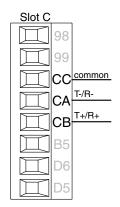
## **Quencharc Wiring Example**

In this example the Quencharc circuit (Watlow part# 0804-0147-0000) is used to protect PM internal circuitry from the counter electromagnetic force from the inductive user load when de-engergized. It is recommended that this or an equivalent Quencharc be used when connecting inductive loads to PM outputs.



## Standard Bus EIA-485 Communications




- Wire T-/R- to the A terminal of the EIA-485 port.
- Wire T+/R+ to the B terminal of the EIA-485 port.
- Wire common to the common terminal of the EIA-485 port.
- Do not route network wires with power wires. Connect network wires in daisy-chain fashion when connecting multiple devices in a network.
- Do not connect more than 16 EZ-ZONE PM controllers on a network.

- Maximum network length: 1,200 meters (4,000 feet)
- 1/8th unit load on EIA-485 bus PM **[4,6,8,9]** \_ \_ \_ [\*] \_ \_ \_ \_
- \* All models include Standard Bus communications (instance 1)

#### Note:

Do not leave a USB to EIA-485 converter connected to Standard Bus without power (i.e., disconnecting the USB end from the computer while leaving the converter connected on Standard Bus). Disturbance on the Standard Bus may occur.

#### Modbus RTU or Standard Bus EIA-485 Communications



- Wire T-/R- to the A terminal of the EIA-485 port.
- Wire T+/R+ to the B terminal of the EIA-485 port.
- Wire common to the common terminal of the EIA-485 port.
- Do not route network wires with power wires. Connect network wires in daisy-chain fashion when connecting multiple devices in a network.
- A termination resistor may be required. Place a 120 Ω resistor across T+/R+ and T-/R- of last controller on network.

- Only one protocol per port is available at a time: either Modbus RTU or Standard Bus.
- Do not connect more than 16 EZ-ZONE controllers on a Standard Bus network.
- Maximum number of EZ-ZONE controllers on a Modbus network is 247.
- maximum network length: 1,200 meters (4,000 feet)
- 1/8th unit load on EIA-485 bus.
- Communications instance 1 PM [4,6,8,9] \_ \_ \_ [1] \_ \_ \_ -

#### Note:

Do not leave a USB to EIA-485 converter connected to Standard Bus without power (i.e., disconnecting the USB end from the computer while leaving the converter connected on Standard Bus). Disturbance on the Standard Bus may occur.



À

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

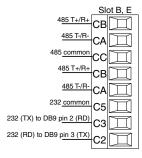
## Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

## Warning:




Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

## Warning:



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

## **EIA-232/485 Modbus RTU Communications**



- Wire T-/R- to the A terminal of the EIA-485 port.
- Wire T+/R+ to the B terminal of the EIA-485 port.
- Wire common to the common terminal of the EIA-485 port.
- Do not route network wires with power wires. Connect network wires in daisychain fashion when connecting multiple devices in a network.
- A termination resistor may be required. Place a 120 Ω resistor across T+/R+ and T-/R- of last controller on network.
- Do not wire to both the EIA-485 and the EIA-232 pins at the same time.
- Two EIA-485 terminals of T/R are provided to assist in daisy-chain wiring.

- Do not connect more than one EZ-ZONE PM controller on an EIA-232 network.
- Do not connect more than 16 EZ-ZONE controllers on a Standard Bus EIA-485 network
- Maximum number of EZ-ZONE controllers on a Modbus network is 247.
- maximum EIA-232 network length: 15 meters (50 feet)
- maximum EIA-485 network length: 1,200 meters (4,000 feet)
- 1/8th unit load on EIA-485 bus.
- Communications instance 2
   Slot B
   PM [6] \_ \_ \_ [2] \_ \_ \_ \_

| Slot E         |   |
|----------------|---|
| PM [4,8,9] [2] | _ |

| Modbus-IDA<br>Terminal | EIA/TIA-485<br>Name | Watlow Terminal<br>Label | Function |
|------------------------|---------------------|--------------------------|----------|
| DO                     | A                   | CA or CD                 | T-/R-    |
| D1                     | В                   | CB or CE                 | T+/R+    |
| common                 | common              | CC or CF                 | common   |

## EtherNet/IP™, PCCC and Modbus TCP Communications

| Slot<br>unused E8 | B, E    | RJ-45<br>pin | T568B wire<br>color | Signal     | Slot<br>B, E | •              |
|-------------------|---------|--------------|---------------------|------------|--------------|----------------|
| unused E7         | $\prod$ | 8            | brown               | unused     | E8           | Ĭ              |
| receive - E6      | Ħ       | 7            | brown & white       | unused     | E7           |                |
| unused E5         | ٩       | 6            | green               | receive -  | E6           |                |
| unused E4         |         | 5            | white & blue        | unused     | E5           | ١.             |
| receive +         | #       | 4            | blue                | unused     | E4           | Ī              |
| transmit -        | #       | 3            | white & green       | receive +  | E3           | s              |
| tronomit .        |         | 2            | orange              | transmit - | E2           | P              |
| E1                |         | 1            | white & orange      | transmit + | E1           | $ \mathbf{s} $ |

| • | Do not  | route  | e netw | ork    |
|---|---------|--------|--------|--------|
|   | wires w | rith p | ower   | wires. |
|   |         |        |        |        |

- Connect one Ethernet cable per controller to a 10/100 Mbps ethernet switch. Both Modbus TCP and EtherNet/IP<sup>TM</sup> are available on the network.
- Communications instance 2

EtherNet/IP $^{\text{TM}}$  and Modbus TCP communica- $^{\text{PM}}$ [4,8,9] \_ \_ \_ - [3] \_ \_ tions to connect with a 10/100 switch.

#### Note:

When changing the fixed IP address cycle module power for new address to take effect.

#### **Ethernet LED Indicators**

Viewing the control from the front and then looking on top four LEDs can be seen aligned vertically front to back. The LEDs are identified accordingly: closest to the front reflects the Network (Net) Status, Module (Mod) Status is next, Activity status follows and lastly, the LED closest to the rear of the control reflects the Link status.



Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

#### Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:



Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

## Warning:



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

#### Note:

When using Modbus TCP, the Network Status and Module Status LEDs are not used.

#### **Network Status**

| Indicator State         | Summary                       | Requirement                                                                                                                                                                                                                               |
|-------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steady Off              | Not powered,<br>no IP address | If the device does not have an IP address (or is powered off), the network status indicator shall be steady off.                                                                                                                          |
| Flashing Green          | No connections                | If the device has no established connections, but has obtained an IP address, the network status indicator shall be flashing green.                                                                                                       |
| Steady Green            | Connected                     | If the device has at least one established connection (even to the Message Router), the network status indicator shall be steady green.                                                                                                   |
| Flashing Red            | Connection timeout            | If one or more of the connections in which this device is the target has timed out, the network status indicator shall be flashing red. This shall be left only if all timed out connections are reestablished or if the device is reset. |
| Steady Red              | Duplicate IP                  | If the device has detected that its IP address is already in use, the network status indicator shall be steady red.                                                                                                                       |
| Flashing Green /<br>Red | Self-test                     | While the device is performing its power up testing, the network status indicator shall be flashing green / red.                                                                                                                          |

#### **Module Status**

| Indicator State      | Summary            | Requirement                                                                                                                                                                                   |
|----------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steady Off           | No power           | If no power is supplied to the device, the module status indicator shall be steady off.                                                                                                       |
| Module Status (cont  | i.)                |                                                                                                                                                                                               |
| Indicator State      | Summary            | Requirement                                                                                                                                                                                   |
| Steady Green         | Device operational | If the device is operating correctly, the module status indicator shall be steady green.                                                                                                      |
| Flashing Green       | Standby            | If the device has not been configured, the module status indicator shall be flashing green.                                                                                                   |
| Flashing Red         | Minor fault        | If the device has detected a recoverable minor fault, the module status indicator shall be flashing red.  NOTE: An incorrect or inconsistent configuration would be considered a minor fault. |
| Steady Red           | Major fault        | If the device has detected a non-recoverable major fault, the module status indicator shall be steady red.                                                                                    |
| Flashing Green / Red | Self-test          | While the device is performing its power up testing, the module status indicator shall be flashing green / red.                                                                               |

## **Link Status**

| Indicator State | Summary                            | Requirement                                                             |  |
|-----------------|------------------------------------|-------------------------------------------------------------------------|--|
| Steady Off      | Not powered,<br>unknown link speed |                                                                         |  |
| Red             | Link speed = 10 Mbit               | If the device is communicating at 10 Mbit, the link LED will be red.    |  |
| Green           | Link speed = 100<br>Mbit           | If the device is communicating at 100 Mbit, the link LED will be green. |  |





Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

## Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:



Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

#### Warning:



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

#### **Activity Status**

| Indicator State Summary |                     | Requirement                                                  |  |  |  |
|-------------------------|---------------------|--------------------------------------------------------------|--|--|--|
| Flashing Green          | Detects activity    | If the MAC detects activity, the LED will be flashing green. |  |  |  |
| Red                     | Link speed = 10Mbit | If the MAC detects a collision, the LED will be red.         |  |  |  |

## **DeviceNet™ Communications**

| Slot B, E          | Terminal | Signal | Function                                      |
|--------------------|----------|--------|-----------------------------------------------|
| V+                 | V+       | V+     | $DeviceNet^{TM}$ power                        |
| CAN_H CH Shield SH | СН       | CAN_H  | positive side of DeviceNet $^{\text{TM}}$ bus |
| CAN_L CI           | SH       | shield | shield interconnect                           |
| V- V- V-           | CL       | CAN_L  | negative side of DeviceNet $^{\text{TM}}$ bus |
|                    | V-       | V-     | DeviceNet™ power<br>return                    |

• Communications instance 2

Slot B (PM **[6]** \_ \_ \_ - **[5]** \_ \_ \_ )
Slot E (PM **[4,8,9]** \_ \_ \_ - **[5]** \_ \_ \_ )

#### **DeviceNet LED Indicators**

Viewing the control from the front and then looking on top two LEDs can be seen aligned vertically front to back. The LED closest to the front is identified as the network (Net) LED where the one next to it would be identified as the module (Mod) LED.

#### **Network Status**

| Indicator LED  | Description                                                                                                                                                 |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Off            | The device is not online and has not completed the duplicate MAC ID test yet. The device may not be powered.                                                |
| Green          | The device is online and has connections in the established state (allcated to a Master).                                                                   |
| Red            | Failed communication device. The device has detected an error that has rendered it incapable of communicating on the network (duplicate MAC ID or Bus-off). |
| Flashing Green | The device is online, but no connection has been allocated or an explicit connection has timed out.                                                         |
| Flashing Red   | A poll connection has timed out.                                                                                                                            |

## **Module Status**

| Indicator LED      | Description                           |
|--------------------|---------------------------------------|
| Off                | No power is applied to the device.    |
| Flashing Green-Red | The device is performing a self-test. |
| Flashing Red       | Major Recoverable Fault.              |
| Red                | Major Unrecoverable Fault.            |
| Green              | The device is operating normally.     |



Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

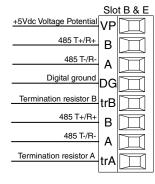
#### Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:




Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

## Warning:



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

#### **Profibus DP Communications**



- Wire T-/R- to the A terminal of the EIA-485 port.
- Wire T+/R+ to the B terminal of the EIA-485 port.
- Wire Digital Ground to the common terminal of the EIA-485 port.
- Do not route network wires with power wires. Connect network wires in daisychain fashion when connecting multiple devices in a network.
- A termination resistor should be used if this control is the last one on the network.
- If using a 150 Ω cable Watlow provides internal termination. Place a jumper across pins trB and B and trA and A.

- If external termination is to be used with a 150  $\Omega$  cable place a 390  $\Omega$  resistor across pins VP and B, a 220  $\Omega$  resistor across pins B and A, and lastly, place a 390  $\Omega$  resistor across pins DG and A.
- Do not connect more than 32 EZ-ZONE PM controllers on any given segment.
- Maximum EIA-485 network length: 1,200 meters (4,000 feet)
- 1/8th unit load on EIA-485
- Communications instance 2 Slot B: PM [6] \_ \_ \_ -[6] \_ \_

Slot E: PM [4, 8, 9] \_ \_ \_ -[6]

| Profibus Terminal      | EIA/TIA-485 Name | Watlow Terminal<br>Label | Function |
|------------------------|------------------|--------------------------|----------|
| VP (Voltage Potential) |                  | VP                       | +5Vdc    |
| B-Line                 | В                | В                        | T+/R+    |
| A-Line                 | A                | A                        | T-/R-    |
| DP-GND                 | common           | DG                       | common   |

#### **Profibus DP LED Indicators**

Viewing the unit from the front and then looking on top of the RUI/GTW two bi-color LEDs can be seen where only the front one is used. Definition follows:

#### Closest to the Front

| Indicator LED   | Description                                                    |
|-----------------|----------------------------------------------------------------|
| Red             | Profibus network not detected                                  |
| Red<br>Flashing | Indicates that the Profibus card is waiting for data exchange. |
| Green           | Data exchange mode                                             |



Use National Electric (NEC) or other country-specific standard wiring and

safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

## Warning: /



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:

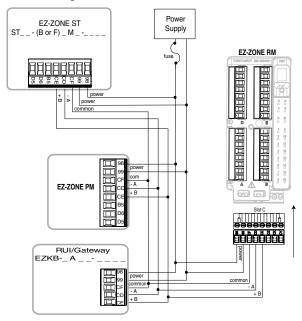


Explosion Hazard - Substitution of component may impair suitability for CLASS I, DIVISION 2.

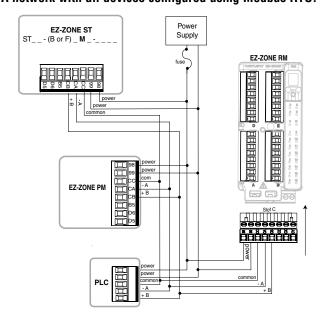
## Warning:



Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.


## Wiring a Serial EIA-485 Network

Do not route network wires with power wires. Connect network wires in daisy-chain fashion when connecting multiple devices in a network.


A termination resistor may be required. Place a 120  $\Omega$  resistor across T+/R+ and T-/R- of the last controller on a network.

Only one protocol per port is available at a time: either Modbus RTU or Standard Bus.

#### A network using Watlow's Standard Bus and an RUI/Gateway.



#### A network with all devices configured using Modbus RTU.





Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

#### Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm<sup>2</sup> (30 to 12 AWG) single-wire termination or two 1.31 mm<sup>2</sup> (16 AWG)
- 0.8 Nm (7.0 lb.-in.) torque

#### Note:

Adjacent terminals may be labeled differently, depending on the model number.

#### Note:

To prevent damage to the controller, do not connect wires to unused terminals.

#### Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

#### Note:

The control output common terminal and the digital common terminal are referenced to different voltages and must remain isolated.

#### Note:

This Equipment is suitable for use in CLASS I, DIVISION 2, Groups A, B, C and D or Non-Hazardous locations only. Temperature Code T4A

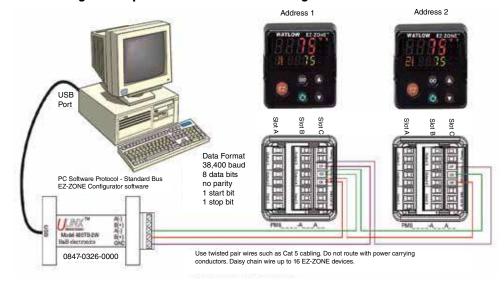
#### Warning:



Explosion Hazard - Dry contact closure Digital Inputs shall not be used in Class I Division 2 Hazardous Locations unless switch used is approved for this application.

#### Warning:




Explosion Hazard – Substitution of component may impair suitability for CLASS I, DIVISION 2.

#### Warning:

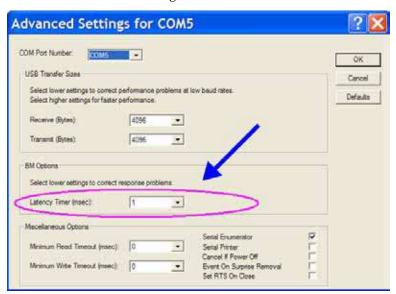


Explosion Hazard - Do not disconnect while the circuit is live or unless the area is known to be free of ignitable concentrations of flammable substances.

## Connecting a Computer to PM Controls Using B&B 485 to USB Converter



#### Note:


Do not leave a USB to EIA-485 converter connected to Standard Bus without power (i.e., disconnecting the USB end from the computer while leaving the converter connected on Standard Bus). Disturbance on the Standard Bus may occur.

#### Note:

When connecting the USB converter to the PC it is suggested that the Latency Timer be changed from the default of 16 msec to 1 msec. Failure to make this change may cause communication loss between the PC running ZE-ZONE Configurator software and the control.

To modify Latency Timer settings follow the steps below:

- 1. Navigate to Device Manager.
- 2. Double click on Ports.
- 3. Right click on the USB serial port in use and select Properties.
- 4. Click the tab labeled Port settings and then click the Advance button.



3

# **Chapter 3: Keys and Displays**

## **Upper Display:**

In the Home Page, displays the process value, otherwise displays the value of the parameter in the lower display.

## Zone Display: -

Indicates the controller zone.

1 to 9 = zones 1 to 9

A = zone 10 b = zone 11 C = zone 12 E = zone 14 F = zone 15 h = zone 16

d = zone 13

#### Lower Display: -

Indicates the set point or output power value during operation, or the parameter whose value appears in the upper display.

#### EZ Key/s:

This key can be programmed to do various tasks, such as starting a profile.

#### **Channel Display:**

Indicates the channel for any given EZ-ZONE module.

- Available with the PM4, 8 and 9 only.

## 1/8 DIN (PM9) Horizontal



## 1/16 (PM6) DIN



## **Temperature Units:**

Indicates whether the temperature is displayed in Fahrenheit or Celsius.

#### **Percent Units:**

Lights when the controller is displaying values as a percentage or when the open-loop set point is displayed.

#### **Output Activity:**

Number LEDs indicate activity of outputs. A flashing light indicates output activity.

### **Profile Activity:**

Lights when a profile is running. Flashes when a profile is paused.

## 1/8 DIN (PM8) Vertical



## **Communications Activity**

Flashes when another device is communicating with this controller.

## Up and Down Keys O

In the Home Page, adjusts the set point in the lower display. In other pages, changes the upper display to a higher or lower value, or changes a parameter selection.

#### Advance Key

Advances through parameter prompts.

## 1/4 DIN (PM4)



#### **Infinity Key ©**

Press to back up one level, or press and hold for two seconds to return to the Home Page. From the Home Page clears alarms and ferrors if clearable.

#### Note:

If integrated limit, the Infinity Key is labeled Reset ●

#### Note:

Upon power up, the upper or left display will briefly indicate the firmware revision and the lower or right display will show PM representing the model.

## Responding to a Displayed Message Attention Codes

An active message (see Home Page for listing) will cause the display to toggle between the normal settings and the active message in the upper display and Attention [###] in the lower display.

Your response will depend on the message and the controller settings. Some messages, such as Ramping and Tuning, indicate that a process is underway. If the message was generated by a latched alarm or limit condition, the message can be cleared when

the condition no longer exists by simply pushing the Infinity  $\odot$  or the Reset  $\odot$  key or alternatively by following the steps below. If an alarm has silencing enabled, it can also be silenced.

Push the Advance Key ① to display Ignore Ignr in the upper display and the message source (such as Limit High [L,h] in the lower display. Use the Up ② and Down ③ keys to scroll through possible responses, such as Clear [L] or Silence [5,L] Then push the Advance ⑤ or Infinity ⑤ key to execute the action. See the Home Page for further information on the Attention Codes.

| Display | Parameter Name<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Setting | Range                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default | Appears If                           |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|
| RELO    | Attention An active message will cause the display to toggle between the normal settings and the active message in the upper display and **RFF*\overline{n}\$ in the lower display.  Your response will depend on the message and the controller settings. Some messages, such as Ramping and Tuning, indicate that a process is underway. If the message was generated by a latched alarm or limit condition, the message can be cleared when the condition no longer exists. If an alarm has silencing enabled, it can be silenced.  1. Push the Advance Key ** to display **\begin{align*} 190\tau\$ in the upper display and the message source (such as **\begin{align*} 1.50\tau\$) in the lower display.  Note:  If the limit is tripped and the trip condition is no longer present the limit can be reset by pressing the Reset Key **\begin{align*} (Infinity Key is labeled Reset).  2. Use the Up **\begin{align*} and Down **\begin{align*} keys to scroll through possible responses, such as Clear **\begin{align*} 1.5\tau\$.  3. Push the Advance **\begin{align*} or Infinity **\begin{align*} \begin{align*} \text{secute the action.}  Alternatively, rather than scrolling through all messages simply push the Infinity **\begin{align*} \begin{align*} \text{or generate a clear.}  \end{align*} |         | RLLI RLLZ RLLI RLLY Alarm Low 1 to 4  RLLI RLLZ RLLI RLLY Alarm High 1 to 4  RLEI RLEZ RLEI RLEY Alarm Error 1 to 4  Ec. I Ec. Z Error Input 1 or 2  LLLI Limit Low 1  LLLI Limit High 1  LLEI Limit Error 1  EUn EUnZ Tuning 1 or 2  CPI CPZ Ramping 1 or 2  LP. I LP. Loop Reversed Error 1 or 2  LP. I LP. D Loop Reversed Error 1 or 2  LP. I Heater Error  LRLL Value to high to be displayed in 4 digit LED display  LED display  LED display |         | an alarm or error message is active. |

## **Navigating the EZ-ZONE PM Integrated Controller**





**Home Page from anywhere:** Press the Infinity Key © for two seconds to return to the Home Page.





Operations Page from Home Page: Press both the Up O and Down V keys for three seconds.





Setup Page from Home Page: Press both the Up O and Down V keys for six seconds.





Profiling Page from Home Page: Press the Advance Key ® for three seconds





**Factory Page from Home Page:** Press both the Advance ⊚ and Infinity © keys for six seconds.

4

# **Chapter 4: Home Page**

## **Default Home Page Parameters**

Watlow's patented user-defined menu system improves operational efficiency. The user-defined Home Page provides you with a shortcut to monitor or change the parameter values that you use most often. The default Home Page is shown on the following page. When a parameter normally located in the Setup Page or Operations Page is placed in the Home Page, it is accessible through both. If you change a parameter in the Home Page, it is automatically changed in its original page. If you change a parameter in its original page it is automatically changed in the Home Page.

The Attention **REE** parameter appears only if there is an active message. An example of an active message could be a Current Error **[.Er]**, or it could be for information only like Autotune **EUNI** taking place.

Use the Advance Key to step through the other parameters. When not in pairs the parameter prompt will appear in the lower display, and the parameter value will appear in the upper display. You can use the Up and Down keys to change the value of writable parameters, just as you would in any other menu.

#### Note:

If a writable value is placed on the upper display and is paired with another read only parameter on the lower display, the arrow keys affect the setting of the upper display. If two writable parameters are paired, the arrow keys affect the lower display.

If Control Mode is set to Auto, the Process Value is in the upper display and the Closed Loop Set Point (read-write) is in the lower display.

If a profile is running, the process value is in the upper display and the Target Set Point (read only) is in the lower display. If Control Mode is set to Manual, the Process Value is in the upper display and the output power level (read-write) is in the lower display.

If Control Mode is set to Off, the Process Value is in the upper display and  $\boxed{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$  (read only) is in the lower display.

If a sensor failure has occurred, ——— is in the upper display and the output power level (read-write) is in the lower display.

## Changing the Set Point

You can change the set point by using the Up • or Down • keys when a profile is not running.

## **Modifying the Home Page**

Follow the steps below to modify the Home Page:

- Push and hold the Advance key and the Infinity
   key for approximately six seconds.
   Upon entering the Factory Page the first menu
- will be the Custom Menu [[]5].

  2. Push the Advance (a) key where the lower display will show ([]5] and the upper display will show
- 3. Push the Advance button where the prompt for the Process Value **F.F.** will be displayed on top and Parameter **PRr** in the bottom.

  There are twenty positions available that can be customized.
- 4. Pushing the Up **②** or Down **③** arrow keys will allow for a customized selection to be made (see list of available parameters below).

| Custom Menu Parameter Options                                        |                                                    |  |  |
|----------------------------------------------------------------------|----------------------------------------------------|--|--|
| Description                                                          | Prompt *                                           |  |  |
| If 4 <sup>th</sup> or 9 <sup>th</sup> digit of part number is L or M |                                                    |  |  |
| Limit Set Point Low                                                  | [ <u>LL.5 1</u>                                    |  |  |
| Limit Set Point High                                                 | [ <u>L h.5 1</u>                                   |  |  |
| Limit Hysteresis                                                     | [ <u>L.hy I</u>                                    |  |  |
| Limit Status                                                         | [ <u>L.5</u> <u>L</u> 1                            |  |  |
| All Models                                                           |                                                    |  |  |
| None                                                                 | Blank                                              |  |  |
| Analog Input Value                                                   | Rin I Rin 2                                        |  |  |
| Cal In Offset                                                        | 1,C81, 182,                                        |  |  |
| Display Units                                                        | [_FI                                               |  |  |
| Load Parameter Set                                                   | U5r.1 U5r.2                                        |  |  |
| Alarm Low Set Point                                                  | [ <u>R.Lo1</u> ] [ <u>R.Lo2</u> ] [ <u>R.Lo3</u> ] |  |  |
| Alarm High Set Point                                                 | [ <u>8,h,1</u> ] [ <u>8,h,2</u> ] [ <u>8,h,3</u> ] |  |  |
| Alarm Hysteresis                                                     | [ <u>8,691</u> ] [ <u>8,692</u> ] [ <u>8,693</u> ] |  |  |
| If 4 <sup>th</sup> digit of part number is                           | B, E, C, R, J, or N                                |  |  |
| Closed Loop Set Point                                                | <u>C.5P1</u> <u>C.5P2</u>                          |  |  |
| Active Process Value                                                 | [ <u>RC.P1</u> ] [ <u>RC.P2</u> ]                  |  |  |
| Active Set Point                                                     | [ <u>8C.51</u> ]                                   |  |  |
| Open Loop Set Point                                                  | 0.5P1 0.5P2                                        |  |  |
| Autotune                                                             | [Rut] [Rut2]                                       |  |  |
| Control Mode                                                         | בייו בייז                                          |  |  |
| Heat Power                                                           | [ <u>h,Pr 1</u> ] [ <u>h,Pr2</u> ]                 |  |  |
| Cool Power                                                           | [.Pr   [.Pr2                                       |  |  |

• 44 •

| Custom Menu Parameter Options                |                                                  |  |
|----------------------------------------------|--------------------------------------------------|--|
| Description                                  | Prompt *                                         |  |
| Time Integral                                | F 1 F 2                                          |  |
| Time Derivative                              | F91 F95                                          |  |
| Dead Band                                    | <u> </u>                                         |  |
| Heat Prop Band                               | [ <u>h,Pb !</u> [ <u>h,Pb2</u> ]                 |  |
| Heat Hysteresis                              | [ <u>h,hy                                   </u> |  |
| Cool Prop Band                               | <u> </u>                                         |  |
| Cool Hysteresis                              | <u> </u>                                         |  |
| If 4 <sup>th</sup> digit of part number is   | B, E, C, R, J, or N                              |  |
| Ramp Rate                                    | r.r £ 1 [r.r £ 2]                                |  |
| TRU-TUNE+ Enable                             | [ <u>E.Eu l</u> [ <u>E.Eu2</u>                   |  |
| Idle Set Point                               | 18.51                                            |  |
| If 4 <sup>th</sup> digit of part number      | is B, E, R or N                                  |  |
| Profile Start                                | P.5 E 1                                          |  |
| Profile Action Request                       | PRC I                                            |  |
| Guarnteed Soak Deviation 1                   | <u>1958                                    </u>  |  |
| If 9 <sup>th</sup> digit of part number is T |                                                  |  |
| Current Read                                 | [U.r ]                                           |  |

<sup>\*</sup> The numerical digit shown in the prompts above (last digit), represents the parameter instance and can be greater than one.

## **Modifying the Display Pairs**

The Home Page, being a customized list of as many as 20 parameters can be configured in pairs of up to 10 via the Display Pairs <code>d.Pr.5</code> prompt found in the Diagnostic Menu <code>d.R.9</code> (Factory Page). The listing in the table that follows is what one may typically find in the Home Page as defaults based on controller part numbers. It is important to note that some of the prompts shown may not appear simply because the feature is not being used or is turned off. As an example, the prompt shown in position 7 (loop 1) and position 12 (loop 2) <code>[.P..]</code> will not appear unless the Cool algorithm <code>[.R.9]</code> is turned on in the Setup Page under the Loop menu.

If the ninth digit of the part number is C, J, L or M

(PM \_ \_ \_ \_ - [C, J, L, M] \_ \_ \_ ) the Display Pairs [d.Pr 5] prompt will default to 2; otherwise, it will be equal to one.

As stated above, the user can define pairs of prompts to appear on the display every time the Advance key is pushed. The first pair will always be as defined in the Custom Menu and as stated will default (factory settings) to the Active Process Value loop 1 [RIP], and the Active Set Point loop 1 [RIP]. If two channels are present the first 2 pairs will be the same in that the first pair will represent channel 1 Active Process Value and Active Set Point and the second being the same for channel 2. If another pair is created where the Display Pairs [APr 5] prompt is equal to 3 using the default prompts, when

the Advance key is pushed two times from the Home Page the upper display will reflect the current control mode and the bottom display would show the output power. When configuring the Custom Menu to your liking it should be noted that if a writable value is placed on the upper display and is paired with another read only parameter on the lower display, the arrow keys will affect the setting of the upper display. Also, if 2 changeable (writable) prompts are displayed in a Pair, i.e., Control Mode on top and Idle Set Point on the bottom, only the lower display (Idle Set Point) can be changed.

|    | Possible Home Page Defaults (Dependent on Part Number)                     | Home Page<br>Display | Parameter Page and Menu       |  |
|----|----------------------------------------------------------------------------|----------------------|-------------------------------|--|
|    | All                                                                        | l Models             |                               |  |
| 1  | Active Process Value (1)                                                   | Numerical<br>value   | Operations Page, Monitor Menu |  |
| 2  | Active Set Point (1)                                                       | Numerical<br>value   | Operations Page, Monitor Menu |  |
|    | If 9 <sup>th</sup> digit of part number is e                               | qual to: PM _        | [L, M]                        |  |
| 3  | Process Value (2)                                                          | Numerical<br>value   | Operations Page, Monitor Menu |  |
| 4  | Limit Status                                                               | 58FE<br>or<br>F8 .L  | Home Page                     |  |
|    | If 9 <sup>th</sup> digit of part number is equal to: PM [A, C, J, R, P, T] |                      |                               |  |
| 3  | Active Process Value (2)                                                   | Pu,82                | Operations Page, Monitor Menu |  |
| 4  | Closed Loop Set Point (2)                                                  | C.5P2                | Operations Page, Monitor Menu |  |
| 5  | Control Mode (1)                                                           | ו רית.               | Operations Page, Monitor Menu |  |
| 6  | Heat Power (1)                                                             | h,Pr I               | Operations Page, Monitor Menu |  |
| 7  | Cool Power (1)                                                             | [Pr                  | Operations Page, Monitor Menu |  |
| 8  | Autotune (1)                                                               | Rut I                | Operations Page, Loop Menu    |  |
| 9  | Idle Set Point(1)                                                          | ı d.5 1              | Operations Page, Loop Menu    |  |
| 10 | Control Mode (2)                                                           | [בַריז]              | Operations Page, Monitor Menu |  |
| 11 | Heat Power (2)                                                             | h,Pr2                | Operations Page, Monitor Menu |  |
| 12 | Cool Power (2)                                                             | [.P-2                | Operations Page, Monitor Menu |  |
| 13 | Autotune (2)                                                               | Rut2                 | Operations Page, Loop Menu    |  |
| 14 | Idle Set Point (2)                                                         | · d.5 2              | Operations Page, Loop Menu    |  |
| 15 | Limit Low Set Point                                                        | L L.5 1              | Operations Page, Limit Menu   |  |
| 16 | Limit High Set Point                                                       | L h,5 1              | Operations Page, Limit Menu   |  |
| 17 | Profile Start                                                              | P.5 Ł 1              |                               |  |
| 18 | Action Request                                                             | P.AC I               |                               |  |
| 19 | None                                                                       |                      |                               |  |
| 20 | None                                                                       |                      |                               |  |

#### Note:

The numerical digit shown in the prompts (last digit) and within the parenthesize above, represents the parameter instance and can be greater than one.

## **Conventions Used in the Menu Pages**

To better understand the menu pages that follow review the naming conventions used. When encountered throughout this document, the word "default" implies as shipped from the factory. Each page (Operations, Setup, Profile and Factory) and their associated menus have identical headers defined below:

| Header Name                      | Definition                                                                                                                                                                          |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display                          | Visually displayed information from the control.                                                                                                                                    |
| Parameter Name                   | Describes the function of the given parameter.                                                                                                                                      |
| Range                            | Defines options available<br>for this prompt, i.e., min/<br>max values (numerical),<br>yes/no, etc (further ex-<br>planation below).                                                |
| Default                          | Values as delivered from the factory.                                                                                                                                               |
| Modbus Relative Address          | Identifies unique parameters using either the Modbus RTU or Modbus TCP protocols (further explanation below).                                                                       |
| CIP (Common Industrial Protocol) | Identifies unique parameters using either the DeviceNet or EtherNet/IP protocol (further explanation below).                                                                        |
| Profibus Index                   | Identifies unique parameters using Profibus DP protocol (further explanation below).                                                                                                |
| Parameter ID                     | Identifies unique parameters used with other software such as, LabVIEW.                                                                                                             |
| Data Type R/W                    | uint = Unsigned 16 bit integer  dint = Signed 32-bit, long  string = ASCII (8 bits per character)  float = IEEE 754 32-bit  RWES= Readable Writable EEPROM (saved) User Set (saved) |

#### **Display**

Visual information from the control is displayed to the observer using a fairly standard 7 segment display. Due to the use of this technology, several characters displayed need some interpretation, see the list below:

| [ ] = 1      | $\square = 0$                           | , = i                              | <u>r</u> = r                                |
|--------------|-----------------------------------------|------------------------------------|---------------------------------------------|
| <b>2</b> = 2 | $[\overline{\mathbf{R}}] = \mathbf{A}$  | $[\underline{\boldsymbol{J}}] = J$ | $5 = \mathbf{S}$                            |
| <b>3</b> = 3 | ( <b><u>b</u></b> ) = b                 | <b>H</b> = K                       | $[\underline{\boldsymbol{E}}] = \mathbf{t}$ |
| <b>4</b> = 4 | <u>c</u> , <u>c</u> = c                 | [ <u>[</u> ] = L                   | <b>U</b> = u                                |
| <b>5</b> = 5 | [ <b>₫</b> ] = d                        | [ <u>[77]</u> ] = M                | ( <u>u</u> ) = v                            |
| <b>6</b> = 6 | ( <b>E</b> ) = E                        | <u>n</u> = n                       | [ <u>[, ]</u> ] = W                         |
| 7 = 7        | $[\underline{\mathbf{F}}] = \mathbf{F}$ | <u>o</u> = 0                       | [ <b><u>y</u></b> ] = y                     |
| <b>B</b> = 8 | <b>9</b> = g                            | ( <u><b>P</b></u> ) = P            | <b>2</b> = Z                                |
| <b>9</b> = 9 | [ <u><b>h</b></u> ] = h                 | [ <u><b>q</b></u> ] = q            |                                             |

#### Range

Within this column notice that on occasion there will be numbers found within parenthesis. This number represents the enumerated value for that particular selection. Range selections can be made simply by writing the enumerated value of choice using any of the available communications protocols. As an example, turn to the Setup Page and look at the Analog Input  $\boxed{\textbf{R}}$ , menu and then the Sensor Type  $\boxed{\textbf{SEn}}$  prompt. To turn the sensor off using Modbus simply write the value of 62 (off) to register 400368 and send that value to the control.

#### **Communication Protocols**

When using a communications protocol in conjunction with the EZ-ZONE PM there are two possible ports (instances) used. Port 1 or instance 1 is always dedicated to Standard Bus communications. This same instance can also be used for Modbus RTU if ordered. Depending on the controller part number port 2 (instance 2) can be used with Modbus, CIP and Profibus. For further information read through the remainder of this section.

#### **Modbus Introduction to the Modbus Protocol**

Gould Modicon, now called AEG Schneider, first created the protocol referred to as "Modbus RTU" used in process control systems. Modbus provides the advantage of being extremely reliable in exchanging information, a highly desirable feature for industrial data communications. This protocol works on the principle of packet exchanges. The packet contains the address of the controller to receive the information, a command field that says what is to be done with the information, and several fields of data. Each PM parameter has a unique Modbus address and they can be found in the following Operations, Setup, Profiling, and Factory Pages.

All Modbus registers are 16-bits and as displayed in this User's Guide are relative addresses (actual). Some legacy software packages limit available Modbus registers to 40001 to 49999 (5 digits). Many applications today require access to all available Modbus registers which range from 400001 to 465535 (6 digits). The PM controller supports 6 digit Modbus registers. For parameters listed as float, notice that only one (low order) of the two registers is listed; this is true throughout this document. By default, the low

order word contains the two low bytes of the 32-bit parameter. As an example, look in the Operations Page for the Analog Input Value. Find the column identified in the header as Modbus and notice that it lists register 360. Because this parameter is a float it is actually represented by registers 360 (low order bytes) and 361 (high order bytes). The Modbus specification does not dictate which register should be high or low order therefore, Watlow provides the user the ability to swap this order (Setup Page, [\_orn] Menu) from the default low/high [\_oh\_, to high/low [h,lo].

#### Note:

With the release of firmware revision 7.00 and above new functions where introduced into this product line. With the introduction of these new functions there was a reorganization of Modbus registers. Notice in the column identified as Modbus the reference to Map 1 and Map 2 registers for each of the various parameters. If the new functions, namely; Math, Linearization, Process Value, Real Time Clock and the Special Output Function are to be used than use Map 2 Modbus registers. If the new functions of this product line are not to be used, Map 1 (legacy PM controls) Modbus registers will be sufficient. The Modbus register mapping [TTRP] can be changed in the Setup Page under the [Call Menu. This setting will apply across the control.

It should also be noted that some of the cells in the Modbus column contain wording pertaining to an offset. Several parameters in the control contain more than one instance; such as, profiles (4), alarms (4), analog inputs (2), etc... The Modbus register shown always represents instance one. Take for an example the Alarm Silence parameter found in the Setup Page under the Alarm Menu. Instance one of Map 1 is shown as address 1490 and +50 is identified as the offset to the next instance. If there was a desire to read or write to instance 3 simply add 100 to 1490 to find its address, in this case, the instance 3 address for Alarm Silence is 1590.

The Modbus communications instance can be either 1 or 2 depending on the part number.

Instance 1:

PM \_ \_ \_ - [1] \_ \_ \_ \_

Instance 2:

PM \_ \_ \_ - [2] \_ \_ \_ \_

To learn more about the Modbus protocol point your browser to http://www.modbus.org.

#### Common Industrial Protocol (CIP) Introduction to CIP

Both DeviceNet and EtherNet/IP use open object based programming tools and use the same addressing scheme. In the following menu pages notice the column header identified as CIP. There you will find the Class, Instance and Attribute in hexadecimal, (decimal in parenthesis) which makes up the addressing for both protocols.

The CIP communications instance will always be instance 2.

#### **Data Types Used with CIP**

| int    | = Signed 16-bit integer       |  |
|--------|-------------------------------|--|
| uint   | = Signed 16-bit integer       |  |
| dint   | = Signed 32-bits, long        |  |
| real   | = Float, IEEE 754 32-bit      |  |
| string | = ASCII, 8 bits per character |  |
| sint   | = Signed 8 bits , byte        |  |

To learn more about the DeviceNet and EtherNet/IP protocol point your browser to <a href="http://www.odva.org">http://www.odva.org</a>.

#### **Profibus DP**

To accommodate for Profibus DP addressing the following menus contain a column identified as Profibus Index. Data types used in conjunction with Profibus DP can be found in the table below.

The Profibus communications instance will always be instance 2.

| real | = Float, IEEE 754 32-bit |
|------|--------------------------|
| int  | = Signed 16-bit integer  |
| byte | = 8-bits                 |

To learn more about the Profibus DP protocol point your browser to http://www.profibus.org

# 5

# **Chapter 5: Operations Page**

## Navigating the Operations Page

To navigate to the Operations Page, follow the steps below:

- 1. From the Home Page, press both the Up and Down keys for three seconds. R will appear in the upper display and PEr will appear in the lower display.
- 2. Press the Up **O** or Down **O** key to view available menus.
- 3. Press the Advance Key 

  to enter the menu of choice.
- 4. If a submenu exists (more than one instance), press

the Up **O** or Down **O** key to select and then press the Advance Key **(A)** to enter.

- 5. Press the Up  ${\bf O}$  or Down  ${\bf O}$  key to move through available menu prompts.
- 6. Press the Infinity Key 

  to move backwards
  through the levels: parameter to submenu; submenu
  to menu; menu to Home Page.
- 7. Press and hold the Infinity Key © for two seconds to return to the Home Page.

On the following pages, top level menus are identified with a yellow background color.

#### Note:

Some of these menus and parameters may not appear, depending on the controller's options. See model number information in the Appendix for more information. If there is only one instance of a menu, no submenus will appear.

#### Note:

Some of the listed parameters may not be visible. Parameter visibility is dependent upon controller part number.

| <u> </u>                       |
|--------------------------------|
| oPEr Analog Input Menu         |
|                                |
| Analog Input (1 to 2)          |
| R in Analog Input Value        |
| LEC Input Error                |
| Calibration Offset             |
| Loc*                           |
| OPEC Linearization Menu        |
|                                |
| Linearization (1 to 2)         |
| Su.A Source Value A            |
| oF5L Offset                    |
| Output Value                   |
|                                |
| <u> </u>                       |
| Process Value Menu             |
|                                |
| Pu Process Value (1 to 2)      |
| 5 u.A Source Value A           |
| Source Value B                 |
| oF5E Offset                    |
| Output Value                   |
|                                |
| d io                           |
| oPEr Digital Input/Output Menu |
| 5 D: :: 1 1/0 (7 / 10)         |
| d o Digital I/O (5 to 12)      |
| do.5 Output State              |
| d 5 Input State                |
| Event Status                   |

| LIPT  OPER Limit Menu  LLS Limit Low Set Point  LLS Limit High Set Point  LLC Limit Clear Request  LSE Limit State |
|--------------------------------------------------------------------------------------------------------------------|
| Process Value Active                                                                                               |
| Control Loop Menu                                                                                                  |

| Ed Time Derivative            |
|-------------------------------|
| dh Dead Band                  |
| o.5P Open Loop Set Point      |
| Open Loop Set I omt           |
| 8L C 7                        |
| oPEr Alarm Menu               |
|                               |
| 81 [7] Alarm (1 to 4)         |
| RL a Alarm Low Set Point      |
| Rh Alarm High Set Point       |
| R.L. Alarm Clear Request      |
| 85 C Alarm Silence Request    |
| 8.5E Alarm State              |
| 7,50 marin state              |
| [Urr                          |
| oPEr Current Menu             |
| L.h., Current High Set Point  |
| [L.L.o] Current Low Set Point |
| Current Read                  |
| [LEr] Current Error           |
| hEr Heater Error              |
| *                             |
| PARE *                        |
| oPEr Math Menu                |
| Source Value A                |
| Source Value B                |
| Source Value E                |
| oF5E Offset                   |
| رين Output Value              |
|                               |
|                               |

Sof\*

PEr Special Output Function

Suß Source Value 1

Sub Source Value 2

ou.! Output Value 1

ou.2 Output Value 2

P5ER

PEr Profile Status Menu

P5Er Profile Status Menu

P5Er Profile Action Request

SEP Current Step

SEY Step Type

E5P! Target Set Point Loop 1

E5P? Target Set Point Loop 2

RC5P Produced Set Point 1

P5P2 Produced Set Point 1

P5P2 Produced Set Point 2

hour Hours

P7 in Minutes

SEC Seconds

Ent! Event 1

Ent? Event 1

Ent? Event 2

JC Jump Count Remaining

\* Available with PM4, 8 and 9 only with 9th digit of part number equal to "C" or "J" AND with 12th digit equal to "C".

PM[4,8,9] \_\_\_\_\_ - [C, J] \_ [C] \_\_\_

| Dis-<br>play      | Parameter name<br>Description                                                                                                                                                                                                                                                    | Range                                                                                                                                                                                                     | Default  | Modbus<br>Relative Ad-<br>dress                                               | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| Analog            | Input Menu                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           |          |                                                                               |                                                    |                   |                   |                                                    |
| [Ain]             | Analog Input (1 to 2) Analog Input Value View the process value. Note: Ensure that the Input Error (below) indicates no error (61) when reading this value us- ing a field bus protocol. If an error exists, the last known value prior to the error occurring will be returned. | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                        |          | Instance 1 Map 1 Map 2 360 360 Instance 2 Map 1 Map 2 440 450                 | 0x68 (104)<br>1 to 2<br>1                          | 0                 | 4001              | float<br>R                                         |
| i.Er              | Analog Input (1 to 2) Input Error View the cause of the most recent error. If the **REE** message is **Er.,!* or **Er.,!* or **Er.,!* or **Left**, this parameter will display the cause of the input error.                                                                     | nonE None (61)  □PEn Open (65)  FRil Fail (32)  ShrE Shorted (127)  EPT Measurement Error (140)  EPT Bad Calibration  Data (139)  EPT Ambient Error (9)  EPT BART RTD Error (141)  □Soc Not Sourced (246) | None     | Instance 1<br>Map 1 Map 2<br>362 362<br>Instance 2<br>Map 1 Map 2<br>442 452  | 0x68 (104)<br>1 to 2<br>2                          | 1                 | 4002              | uint<br>R                                          |
| [ i.CA]           | Analog Input (1 to 2) Calibration Offset Offset the input reading to compensate for lead wire resistance or other factors that cause the in- put reading to vary from the actual process value.                                                                                  | -1,999.000 to 9,999.000°F<br>or units<br>-1,110.555 to 5,555.000°C                                                                                                                                        | 0.0      | Instance 1<br>Map 1 Map 2<br>382 382<br>Instance 2<br>Map 1 Map 2<br>462 472  | 0x68 (104)<br>1 to 2<br>0xC (12)                   | 2                 | 4012              | float<br>RWES                                      |
| Lnr* oPEr Lineari | zation Menu                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           | •        |                                                                               |                                                    |                   |                   |                                                    |
| [ Su.A]           | Linearization (1 to 2) Source Value A View the value of Source A. Source A of Linearization 1 is connected to Analog Input 1 Source A of Linearization 2 is connected to Analog Input 2                                                                                          | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                        |          | Instance 1 Map 1 Map 2 3566 Instance 2 Map 1 Map 2 3636                       | 0x86 (134)<br>1 to 2<br>4                          |                   | 34004             | float<br>R                                         |
| oF5t<br>[oFSt]    | Construction (1 to 2)  Offset  Set an offset to be applied to this function's output.                                                                                                                                                                                            | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                        | 0        | Instance 1   Map 1   Map 2     3570     Instance 2   Map 1   Map 2       3640 | 0x86 (134)<br>1 to 2<br>6                          |                   | 34006             | float<br>RWES                                      |
| be read           | alues will be rounded off to fit in with other interfaces.                                                                                                                                                                                                                       | the four-character display. Full va<br>nodels only                                                                                                                                                        | lues can |                                                                               |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play               | Parameter name<br>Description                                                                                                                                                              | Range                                                                                                                                                                                                 | Default  | Modbus<br>Relative Ad-<br>dress                                           | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| [ o.v]                     | Linearization (1 to 2) Output Value View the value of this function's output.                                                                                                              | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    |          | Instance 1   Map 1   Map 2     3572   Instance 2   Map 1   Map 2     3642 | 0x86 (134)<br>1 to 2<br>7                          |                   | 34007             | float<br>R                                         |
| No<br>Dis-<br>play         | Linearization (1 to 2) Output Error View reported cause for Linearization output malfunction.                                                                                              | None (61) Open (65) Shorted (127) Measurement error (140) Bad calibration data (139) Ambient error (9) RTD error (14) Fail (32) Math error (1423) Not sourced (246) Stale (1617) Can't process (1659) | None     | Instance 1 Map 1 Map 2 3614 Instance 2 Map 1 Map 2 3684                   | 0x86 (134)<br>1 to 2<br>0x1C (28)                  |                   | 34028             | uint<br>R                                          |
| Pu* oPEr Process           | Value Menu                                                                                                                                                                                 |                                                                                                                                                                                                       |          |                                                                           |                                                    |                   |                   |                                                    |
| <b>5</b> <i>uR</i> [ Sv.A] | Process Value (1 to 2) Source Value A View the value of Source A.  Linearization 1 is connected to Source A of Process Value 1 Linearization 2 is connected to Source A of Process Value 2 | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    |          | Instance 1   Map 1   Map 2     3310   Instance 2   Map 1   Map 2     3380 | 0x7E (126)<br>1 to 2<br>0x10 (16)                  |                   | 26016             | float<br>R                                         |
| <b>5b</b><br>[ Sv.b]       | Process Value (1 to 2) Source Value B View the value of Source B. Linearization 2 is connected to Source B of Process Value 1 Linearization 1 is connected to Source B of Process Value 2  | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    |          | Instance 1 Map 1 Map 2 3312 Instance 2 Map 1 Map 2 3382                   | 0x7E (126)<br>1 to 2<br>0x11 (17)                  |                   | 26017             | float<br>R                                         |
| <b>oF5</b> E<br>[oFSt]     | Process Value (1 to 2) Offset Set an offset to be applied to this function's output.                                                                                                       | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    | 0        | Instance 1 Map 1 Map 2 3324 Instance 2 Map 1 Map 2 3394                   | 0x7E (126)<br>1 to 2<br>0x17 (23)                  |                   | 26023             | float<br>RWES                                      |
| [ 0.v]                     | Process Value (1 to 2) Output Value View the value of this function block's output.                                                                                                        | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    | 0.0      | Instance 1 Map 1 Map 2 3322 Instance 2 Map 1 Map 2 3392                   | 0x7E (126)<br>1 to 2<br>0x16 (22)                  |                   | 26022             | float<br>R                                         |
| be read                    | alues will be rounded off to fit in with other interfaces.                                                                                                                                 | the four-character display. Full val                                                                                                                                                                  | lues can |                                                                           |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play             | Parameter name<br>Description                                                               | Range                                                                                                                                                                                                 | Default                      | Modbus<br>Relative Ad-<br>dress                                                | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|--------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| No<br>Dis-<br>play       | Process Value (1 to 2) Output Error View reported cause for Process output malfunction.     | None (61) Open (65) Shorted (127) Measurement error (140) Bad calibration data (139) Ambient error (9) RTD error (14) Fail (32) Math error (1423) Not sourced (246) Stale (1617) Can't process (1659) | None                         | Instance 1 Map 1 Map 2 3332 Instance 2 Map 1 Map 2 3402                        | 0x86 (134)<br>1 to 2<br>0x1B (27)                  |                   | 26027             | uint<br>R                                          |
| d o<br>oPEr<br>Digital   | Input/Output Menu                                                                           |                                                                                                                                                                                                       |                              |                                                                                |                                                    |                   |                   |                                                    |
| <b>do.5</b> [ do.S]      | Digital Output (5 to 12) Output State View the state of this output.                        | <b>off</b> Off (62) <b>oo</b> On (63)                                                                                                                                                                 |                              | Instance 1 Map 1 Map 2 1012 1132 Offset to next instance equals +30            | 0x6A (106)<br>5 to C (12)<br>7                     | 90                | 6007              | uint<br>R                                          |
| [ di.S]                  | Digital Input (5 to 12) Input State View this event input state.                            | off (62) on On (63)                                                                                                                                                                                   |                              | Instance 1 Map 1 Map 2 1020 1140 Offset to next instance equals +30            | 0x6A (106)<br>5 to C (12)<br>0xB (11)              |                   | 6011              | uint<br>R                                          |
| [ Ei.S]                  | Digital Input (5 to 6) Event Status View this event input state.                            | RcE Active (41) RcE Active (5)                                                                                                                                                                        |                              | Instance 1 Map 1 Map 2 1328 1568 Offset to next instance equals +20            | 0x6E (110)<br>1 to 2<br>5                          | 140               | 10005             | uint<br>R                                          |
| [ Ei.S]                  | Digital Input (7 to 12)  Event Status  View this event input state.                         | RcE Active (41) RcE Active (5)                                                                                                                                                                        |                              | Instance 1 Map 1 Map 2 1648 Offset to next instance equals +20                 | 0x6E (110)<br>5 to 10<br>5                         | 140               | 10005             | uint<br>R                                          |
| No Display               | EZ-Key/s (1 to 2) Event Status View this event input state.                                 | RCE Active (41) RCE Active (5)                                                                                                                                                                        | Off                          | Instance 1   Map 1   Map 2   1368   1608   Instance 2   Map 1   Map 2     1628 | 0x6E (110)<br>3 to 4<br>5                          | 140               | 10005             | uint<br>R                                          |
| L, P7<br>oPEr<br>Limit M | enu                                                                                         |                                                                                                                                                                                                       |                              |                                                                                |                                                    |                   |                   |                                                    |
| [ LL.S]                  | Limit (1) Limit Low Set Point Set the low process value that will trigger the limit.        | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    | 0.0°F or<br>units<br>-18.0°C | Instance 1 Map 1 Map 2 684 724                                                 | 0x70 (112)<br>1<br>3                               | 38                | 12003             | float<br>RWES                                      |
| be read                  | alues will be rounded off to fit in<br>with other interfaces.<br>Ie with PM4, PM8 and PM9 r | the four-character display. Full va                                                                                                                                                                   | lues can                     |                                                                                |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play            | Parameter name<br>Description                                                                                                                                                                          | Range                                                                     | Default                      | Modbus<br>Relative Ad-<br>dress                                                                                           | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------|
| [ Lh.S]                 | Limit (1) Limit High Set Point Set the high process value that will trigger the limit.                                                                                                                 | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C        | 0.0°F or<br>units<br>-18.0°C | Instance 1 Map 1 Map 2 686 726                                                                                            | 0x70 (112)<br>1<br>4                               | 39                | 12004             | float<br>RWES                    |
| No<br>Dis-<br>play      | Limit (1) Limit State Clear limit once limit condition is cleared.                                                                                                                                     | Off (62)<br>None (61)<br>Limit High (51)<br>Limit Low (52)<br>Error (225) |                              | Instance 1           Map 1         Map 2           690         730                                                        | 0x70 (112)<br>1<br>6                               |                   | 12006             | uint<br>R                        |
| [LCr]                   | Limit (1) Limit Clear Request Clear limit once limit condition is cleared.                                                                                                                             | Clear (0)<br>No Change (255)                                              |                              | Instance 1<br>  Map 1   Map 2<br>  680   720                                                                              | 0x70 (112)<br>1<br>1                               |                   | 12001             | uint<br>W                        |
| [ L.St]                 | Limit (1 to 4) Limit Status Reflects whether or not the limit is in a safe or failed mode.                                                                                                             | Fail (32)<br>Safe (1667)                                                  |                              | Instance 1 Map 1 Map 2 744                                                                                                | 0x70 (112)<br>1<br>0x0D (13)                       |                   | 12013             | uint<br>R                        |
| PPon<br>oPEr<br>Monitor | · Menu                                                                                                                                                                                                 |                                                                           |                              |                                                                                                                           |                                                    |                   |                   |                                  |
| [C.MA]                  | Monitor (1 to 2) Control Mode Active View the current control mode.                                                                                                                                    | ©FF Off (62)  RUE © Auto (10)  PTRO Manual (54)                           |                              | Instance 1<br>  Map 1   Map 2<br>  1882   2362<br>  Instance 2<br>  Map 1   Map 2<br>  1952   2432                        | 0x97 (151)<br>1 to 2<br>2                          |                   | 8002              | uint<br>R                        |
| <b>h,Pr</b> [h.Pr]      | Monitor (1 to 2) Heat Power View the current heat output level.                                                                                                                                        | 0.0 to 100.0%                                                             | 0.0                          | Instance 1<br>  Map 1   Map 2<br>  1904   2384<br>  Instance 2<br>  Map 1   Map 2<br>  1974   2454                        | 0x97 (151)<br>1 to 2<br>0xD (13)                   |                   | 8011              | float<br>R                       |
| [ C.Pr]                 | Monitor (1 to 2) Cool Power View the current cool output level.                                                                                                                                        | -100.0 to 0.0%                                                            | 0.0                          | Instance 1       Map 1     Map 2       1906     2386       Instance 2     Map 1       Map 1     Map 2       1976     2456 | 0x97 (151)<br>1 to 2<br>0xE (14)                   |                   | 8014              | float<br>R                       |
| [ C.SP]                 | Monitor (1 to 2) Closed Loop Set Point View the set point currently in effect.                                                                                                                         | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C        |                              | Instance 1 Map 1 Map 2 2172 2652 Instance 2 Map 1 Map 2 2252 2732                                                         | 0x6B (107)<br>1 to 2<br>7                          |                   | 8029              | float<br>R                       |
| [ Pv.A]                 | Monitor (1 to 2) Process Value Active View the current filtered process value using the control input.                                                                                                 | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C        |                              | Instance 1   Map 1   Map 2   402   402   Instance 2   Map 1   Map 2   482   492                                           | 0x68 (104)<br>1 to 2<br>0x16 (22)                  |                   | 8031              | float<br>R                       |
| be read                 | Note: Some values will be rounded off to fit in the four-character display. Full values can be read with other interfaces.  * Available with PM4, PM8 and PM9 models only  R: Re W: W E: EEI S: Us Set |                                                                           |                              |                                                                                                                           |                                                    |                   |                   |                                  |

| Dis-<br>play           | Parameter name<br>Description                                                                                                    | Range                                                                                                                                                                                                                                                                                                                                                                 | Default  | Modbus<br>Relative Ad-<br>dress                                                     | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| No Display             | Monitor (1 to 2) Set Point Active Read the current active set point.                                                             | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                                                                                                                                                                                    |          | Instance 1   Map 1   Map 2   2172   2652   Instance 2   Map 1   Map 2   2252   2732 | 0x6B (107)<br>1 to 2<br>7                          |                   | 7018              | float<br>R                                         |
| No Display             | Monitor (1 to 2) Autotune Status Read the present status of Autotune.                                                            | Off (62) Waiting for cross 1 positive (119) Waiting for cross 1 negative (120) Waiting for cross 2 positive (121) Waiting for cross 2 negative (122) Waiting for cross 3 positive (123) Waiting for cross 3 positive (123) Waiting for cross 3 negative (150) Measuring maximum peak (151) Measuring minimum peak (152) Calculating (153) Complete (18) Timeout (118) |          | Instance 1 Map 1 Map 2 1932 2412 Instance 2 Map 1 Map 2 2002 2482                   | 0x97 (151)<br>1 to 2<br>27                         |                   | 8027              | uint<br>R                                          |
| oPEr<br>Control        | l Loop Menu                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                     |                                                    |                   |                   |                                                    |
| r.En]                  | Control Loop (1 to 2)  Remote Enable  Enable this loop to switch control to the remote set point.                                | No (59)  YES Yes (106)                                                                                                                                                                                                                                                                                                                                                | No       | Instance 1   Map 1   Map 2   2200   2680   Instance 2   Map 1   Map 2   2280   2760 | 0x6B (107)<br>1 to 2<br>0x15 (21)                  | 48                | 7021              | uint<br>RWES                                       |
| [ r.ty]                | Control Loop (1 to 2) Remote Set Point Type Enable this loop to switch control to the remote set point.                          | Ruto (10) [P78] Manual (54)                                                                                                                                                                                                                                                                                                                                           | Auto     | Instance 1   Map 1   Map 2   2202   2682   Instance 2   Map 1   Map 2   2282   2762 | 0x6B (107)<br>1 to 2<br>0x16 (22)                  |                   | 7022              | uint<br>RWES                                       |
| [ C.M]                 | Control Loop (1 to 2) Control Mode Select the method that this loop will use to control.                                         | ©FF Off (62)  RUL © Auto (10)  [778] Manual (54)                                                                                                                                                                                                                                                                                                                      | Auto     | Instance 1   Map 1   Map 2   1880   2360   Instance 2   Map 1   Map 2   1950   2430 | 0x97 (151)<br>1 to 2<br>1                          | 63                | 8001              | uint<br>RWES                                       |
| <b>R.E.S.P</b> [A.tSP] | Control Loop (1 to 2) Autotune Set Point Set the set point that the autotune will use, as a percentage of the current set point. | 50.0 to 200.0%                                                                                                                                                                                                                                                                                                                                                        | 90.0     | Instance 1   Map 1   Map 2   1918   2398   Instance 2   Map 1   Map 2   1988   2468 | 0x97 (151)<br>1 to 2<br>0x14 (20)                  |                   | 8025              | float<br>RWES                                      |
| be read                | alues will be rounded off to fit in with other interfaces.                                                                       | the four-character display. Full va                                                                                                                                                                                                                                                                                                                                   | lues can |                                                                                     |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play        | Parameter name<br>Description                                                                                                                                                                                   | Range                                                         | Default                         | Modbus<br>Relative Ad-<br>dress                                                                                           | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| RUE<br>[AUt]        | Control Loop (1 to 2)  Autotune  Start an autotune. While the autotune is active, the Home Page will display [REED   EUD   I or [EUD   2]. When the autotune is complete, the message will clear automatically. | <b>No</b> (59) <b>YE5</b> Yes (106)                           | No                              | Instance 1<br>  Map 1   Map 2<br>  1920   2400<br>  Instance 2<br>  Map 1   Map 2<br>  1990   2470                        | 0x97 (151)<br>1 to 2<br>0x15 (21)                  | 64                | 8026              | uint<br>RW                                         |
| [ C.SP]             | Control Loop (1 to 2) Closed Loop Set Point Set the set point that the controller will automatically control to.                                                                                                | Low Set Point to High Set<br>Point (Setup Page)               | 75.0°F<br>or<br>units<br>24.0°C | Instance 1   Map 1   Map 2   2160   2640   Instance 2   Map 1   Map 2   2240   2720                                       | 0x6B (107)<br>1 to 2<br>1                          | 49                | 7001              | float<br>RWES                                      |
| [ id.S]             | Control Loop (1 to 2)  Idle Set Point  Set a closed loop set point that can be triggered by an event state.                                                                                                     | Low Set Point to High Set<br>Point (Setup Page)               | 75.0°F<br>or<br>units<br>24.0°C | Instance 1   Map 1   Map 2   2176   2656   Instance 2   Map 1   Map 2   2197   2736                                       | 0x6B (107)<br>1 to 2<br>9                          | 50                | 7009              | float<br>RWES                                      |
| <b>h,Pb</b> [ h.Pb] | Control Loop (1 to 2) Heat Proportional Band Set the PID proportional band for the heat outputs.                                                                                                                | 0.001 to 9,999.000°F or<br>units<br>-1,110.555 to 5,555.000°C | 25.0°F<br>or<br>units<br>14.0°C | Instance 1       Map 1     Map 2       1890     2370       Instance 2     Map 1       Map 1     Map 2       1960     2440 | 0x97 (151)<br>1 to 2<br>6                          | 65                | 8009              | float<br>RWES                                      |
| [ h.hy]             | Control Loop (1 to 2) Heat Hysteresis Set the control switching hysteresis for on-off control. This determines how far into the "on" region the process value needs to move before the output turns on.         | 0.001 to 9,999.000°F or<br>units<br>0.001 to 5,555.000°C      | 3.0°F or<br>units<br>2.0°C      | Instance 1<br>  Map 1   Map 2<br>  1900   2380<br>  Instance 2<br>  Map 1   Map 2<br>  1970   2450                        | 0x97 (151)<br>1 to 2<br>0xB (11)                   | 66                | 8010              | float<br>RWES                                      |
| [ C.Pb]             | Control Loop (1 to 2) Cool Proportional Band Set the PID proportional band for the cool outputs.                                                                                                                | 0.001 to 9,999.000°F or<br>units<br>0.001 to 5,555.000°C      | 25.0°F<br>or<br>units<br>14.0°C | Instance 1   Map 1   Map 2   1892   2370   Instance 2   Map 1   Map 2   1962   2442                                       | 0x97 (151)<br>1 to 2<br>7                          | 67                | 8012              | float<br>RWES                                      |
| [ C.hy]             | Control Loop (1 to 2) Cool Hysteresis Set the control switching hysteresis for on-off control. This determines how far into the "on" region the process value needs to move before the output turns on.         | 0.001 to 9,999.000°F or<br>units<br>0.001 to 5,555.000°C      | 3.0°F or<br>units<br>2.0°C      | Instance 1 Map 1 Map 2 1902 2382 Instance 2 Map 1 Map 2 1972 2522                                                         | 0x97 (151)<br>1 to 2<br>0xC (12)                   | 68                | 8013              | float<br>RWES                                      |
| be read             | alues will be rounded off to fit in<br>with other interfaces.<br>Ie with PM4, PM8 and PM9 r                                                                                                                     | the four-character display. Full val                          | lues can                        |                                                                                                                           |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play       | Parameter name<br>Description                                                                                                                                                                                                                                            | Range                                                                     | Default                             | Modbus<br>Relative Ad-<br>dress                                                     | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index                                  | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------|----------------------------------|
| [ ti]              | Control Loop (1 to 2)  Time Integral  Set the PID integral for the outputs.                                                                                                                                                                                              | 0 to 9,999 seconds per<br>repeat                                          | 180.0<br>seconds<br>per re-<br>peat | Instance 1   Map 1   Map 2   1894   2374   Instance 2   Map 1   Map 2   1964   2444 | 0x97 (151)<br>1 to 2<br>8                          | 69                                                 | 8006              | float<br>RWES                    |
| [ td]              | Control Loop (1 to 2)  Time Derivative  Set the PID derivative time for the outputs.                                                                                                                                                                                     | 0 to 9,999 seconds                                                        | 0.0<br>seconds                      | Instance 1 Map 1 Map 2 1896 2376 Instance 2 Map 1 Map 2 1966 2446                   | 0x97 (151)<br>1 to 2<br>9                          | 70                                                 | 8007              | float<br>RWES                    |
| [ db]              | Control Loop (1 to 2)  Dead Band  Set the offset to the proportional band. With a negative value, both heating and cooling outputs are active when the process value is near the set point. A positive value keeps heating and cooling outputs from fighting each other. | -1,000.0 to 1,000.0°F or<br>units<br>-556 to 556°C                        | 0.0                                 | Instance 1 Map 1 Map 2 1898 2378 Instance 2 Map 1 Map 2 1968 2448                   | 0x97 (151)<br>1 to 2<br>0xA (10)                   | 71                                                 | 8008              | float<br>RWES                    |
| [ o.SP]            | Control Loop (1 to 2) Open Loop Set Point Set a fixed level of output power when in manual (open-loop) mode.                                                                                                                                                             | -100 to 100% (heat and cool) 0 to 100% (heat only) -100 to 0% (cool only) | 0.0                                 | Instance 1   Map 1   Map 2   2162   2642   Instance 2   Map 1   Map 2   2242   2722 | 0x6B (107)<br>1 to 2<br>2                          | 51                                                 | 7002              | float<br>RWES                    |
| No<br>Dis-<br>play | Control Loop (1 to 2) Loop Error Open Loop detect deviation has been exceeded.                                                                                                                                                                                           | None (61)<br>Open Loop (1274)<br>Reversed Sensor (1275)                   |                                     | Instance 1 Map 1 Map 2 1798                                                         | 0x6C (108)<br>1<br>0x30 (48)                       |                                                    | 8048              | uint<br>R                        |
| No<br>Dis-<br>play | Control Loop (1 to 2) Clear Loop Error Current state of limit output.                                                                                                                                                                                                    | Clear (129)<br>Ignore (204)                                               |                                     | Instance 1 Map 1 Map 2 1800                                                         | 0x6C (108)<br>1<br>0x31 (49)                       |                                                    | 8049              | uint<br>W                        |
| No<br>Dis-<br>play | Control Loop (1 to 2) Loop Output Power View the loop output power.                                                                                                                                                                                                      | -100.0 to 100.0                                                           |                                     | Instance 1   Map 1   Map 2   1908   2388   Instance 2   Map 1   Map 2   1978   2458 | 0x97 (151)<br>1 to 2<br>0x0F (15)                  |                                                    | 8033              | float<br>R                       |
| be read            | ulues will be rounded off to fit in with other interfaces.                                                                                                                                                                                                               |                                                                           |                                     |                                                                                     |                                                    | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |                   |                                  |

| Dis-<br>play            | Parameter name<br>Description                                                                                                                                                                                                                                                                                                                                                                         | Range                                                              | Default                           | Modbus<br>Relative Ad-<br>dress                                                                                          | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| ALPT<br>oPEr<br>Alarm M | lenu                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                                   |                                                                                                                          |                                                    |                   |                   |                                                    |
| [A.Lo]                  | Alarm (1 to 4)  Alarm Low Set Point  If Alarm Type (Setup Page, Alarm Menu) is set to:  process - set the process value that will trigger a low alarm.  deviation - set the span of units from the closed loop set point that will trigger a low alarm. A negative set point rep- resents a value below closed loop set point. A positive set point rep- resents a value above closed loop set point. | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C | 32.0°F<br>or<br>units<br>0.0°C    | Instance 1 Map 1 Map 2 1482 1882  Offset to next instance (Map 1) equals +50  Offset to next instance (Map 2) equals +60 | 0x6D<br>(109)<br>1 to 4<br>2                       | 18                | 9002              | float<br>RWES                                      |
| [A.hi]                  | Alarm (1 to 4) Alarm High Set Point If Alarm Type (Setup Page, Alarm Menu) is set to: process - set the process value that will trigger a high alarm. deviation - set the span of units from the closed loop set point that will trigger a high alarm.                                                                                                                                                | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C | 300.0°F<br>or<br>units<br>150.0°C | Instance 1 Map 1 Map 2 1480 1880  Offset to next instance (Map 1) equals +50  Offset to next instance (Map 2) equals +60 | 0x6D<br>(109)<br>1 to 4<br>1                       | 19                | 9001              | float<br>RWES                                      |
| [A.Clr]                 | Alarm (1 to 4) Alarm Clear Request Write to this register to clear an alarm  Note:  If an alarm is setup to latch when active  RILL will appear on the display.                                                                                                                                                                                                                                       | Clear (0)<br>No Change (255)                                       |                                   | Instance 1 Map 1 Map 2 1504 1904  Offset to next instance (Map1 1 equals +50, Map 2 equals +60)                          | 0x6D<br>(109)<br>1 to 4<br>0xD (13)                |                   | 9013              | uint<br>W                                          |
| [A.Sir]                 | Alarm (1 to 4) Alarm Silence Request Write to this register to silence an alarm  Note:  If an alarm is setup to silence alarm when active R.5 r will appear on the display.                                                                                                                                                                                                                           | 5 il Silence Alarm (1010)                                          | 0                                 | Instance 1 Map 1 Map 2 1506 1906  Offset to next instance (Map1 1 equals +50, Map 2 equals +60)                          | 0x6D<br>(109)<br>1 to 4<br>0xE (14)                |                   | 9014              | uint<br>W                                          |
| be read                 | ulues will be rounded off to fit in with other interfaces.                                                                                                                                                                                                                                                                                                                                            | the four-character display. Full va                                | lues can                          |                                                                                                                          |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play       | Parameter name<br>Description                                                                         | Range                                                                                      | Default   | Modbus<br>Relative Ad-<br>dress                                                                 | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|--------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| [A.St]             | Alarm (1 to 4) Alarm State Current state of alarm                                                     | Startup (88)<br>None (61)<br>Blocked (12)<br>Alarm low (8)<br>Alarm high (7)<br>Error (28) | Startup   | Instance 1 Map 1 Map 2 1496 1896  Offset to next instance [Map1 +50], [Map 2 +60]               | 0x6D<br>(109)<br>1 to 4<br>9                       |                   | 9009              | uint<br>R                                          |
| No<br>Dis-<br>play | Alarm (1 to 4) Alarm Clearable Indicates if alarm can be cleared.                                     | No (59)  985 Yes (106)                                                                     |           | Instance 1 Map 1 Map 2 1502 1902  Offset to next instance (Map1 1 equals +50, Map 2 equals +60) | 0x6D<br>(109)<br>1 to 4<br>0xC (12)                |                   | 9012              | uint<br>R                                          |
| No<br>Dis-<br>play | Alarm (1 to 4) Alarm Silenced Indicates if alarm is silenced.                                         | Yes (106)<br>No (59)                                                                       |           | Instance 1 Map 1 Map 2 1500 1900  Offset to next instance (Map1 1 equals +50, Map 2 equals +60) | 0x6D<br>(109)<br>1 to 4<br>0x0B (11)               |                   | 9011              | uint<br>R                                          |
| No<br>Dis-<br>play | Alarm (1 to 4) Alarm Latched Indicates if alarm is latched.                                           | Yes (106)<br>No (59)                                                                       |           | Instance 1 Map 1 Map 2 1498 1898  Offset to next instance (Map1 1 equals +50, Map 2 equals +60) | 0x6D<br>(109)<br>1 to 4<br>0x0A (10)               |                   | 9010              | uint<br>R                                          |
| Current            | t Menu                                                                                                |                                                                                            | •         |                                                                                                 |                                                    |                   |                   |                                                    |
| [ C.hi]            | Current (1) Current High Set Point Set the current value that will trigger a high heater error state. | -1,999.000 to 9,999.000                                                                    | 50.0      | Instance 1 Map 1 Map 2 1134 1374                                                                | 0x73 (115)<br>1<br>8                               |                   | 15008             | float<br>RWES                                      |
| [ C.Lo]            | Current (1) Current Low Set Point Set the current value that will trigger a low heater error state.   | -1,999.000 to 9,999.000                                                                    | 0.0       | Instance 1 Map 1 Map 2 1136 1376                                                                | 0x73 (115)<br>1<br>9                               |                   | 15009             | float<br>RWES                                      |
| [ CU.r]            | RMS Current (1) Current Read View the RMS current value monitored by the current transformer.         | 0 to 9,999.00                                                                              |           | Instance 1 Map 1 Map 2 1132 1372                                                                | 0x73 (115)<br>1<br>7                               |                   | 15007             | float<br>R                                         |
| be read            | alues will be rounded off to fit in with other interfaces.  Ie with PM4, PM8 and PM9 r                | the four-character display. Full va                                                        | ilues can |                                                                                                 |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play            | Parameter name<br>Description                                                                  | Range                                                                                                                                                                                                 | Default  | Modbus<br>Relative Ad-<br>dress  | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|-------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| [ C.Er]                 | Current (1) Current Error View the most recent load status.                                    | None (61)    Shr E   Shorted (127)   OPEn   Open (65)                                                                                                                                                 | None     | Instance 1 Map 1 Map 2 1160 1400 | 0x73 (115)<br>1<br>2                               |                   | 15002             | uint<br>R                                          |
| [ h.Er]                 | Current (1) Heater Error Determine if load current flow is within the High and Low Set Points. | None (61)  h .9h High (37)  Lold Low (53)                                                                                                                                                             | None     | Instance 1 Map 1 Map 2 1124 1364 | 0x73 (115)<br>1<br>3                               |                   | 15003             | uint<br>R                                          |
| No<br>Dis-<br>play      | Current (1) Error Status View the cause of the most recent load fault                          | None (61)<br>Fail (32)                                                                                                                                                                                |          | Instance 1 Map 1 Map 2 1160 1400 | 0x73 (115)<br>1<br>21                              |                   | 15021             | uint<br>R                                          |
| רחאב*<br>ספר<br>Math Me | enu                                                                                            |                                                                                                                                                                                                       |          |                                  |                                                    |                   |                   |                                                    |
| <b>5</b>                | Math (1) Source Value A View the value of Source A or Linearization 1.                         | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    | 0.0      | Instance 1 Map 1 Map 2 3030      | 0x7D<br>(125)<br>1<br>0x10 (16)                    |                   | 25016             | float<br>RWES                                      |
| <b>5 u.b</b><br>[ Sv.b] | Math (1) Source Value B View the value of Source B or Linearization 2.                         | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    | 0.0      | Instance 1 Map 1 Map 2 3032      | 0x7D<br>(125)<br>1<br>0x11 (17)                    |                   | 25017             | float<br>RWES                                      |
| <b>5 u.E</b><br>[ Su.E] | Math (1) Source Value E Disables Process/Deviation scale when on.                              | off (62) on (63)                                                                                                                                                                                      | 0        | Instance 1 Map 1 Map 2 3038      | 0x7D<br>(125)<br>1<br>0x14 (20)                    |                   | 25020             | uint<br>RWES                                       |
| oF5Ł<br>[oFSt]          | Math (1) Offset Set an offset to be applied to this function's output.                         | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    | 0.0      | Instance 1 Map 1 Map 2 3044      | 0x7D<br>(125)<br>1<br>0x17 (23)                    |                   | 25023             | float<br>RWES                                      |
| [ o.v]                  | Math (1) Output Value View the value of this function's output.                                | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    | 0.0      | Instance 1 Map 1 Map 2 3042      | 0x7D<br>(125)<br>1<br>0x16 (22)                    |                   | 25022             | float<br>RWES                                      |
| No<br>Dis-<br>play      | Math (1) Math Output Error View reported cause for math malfunction.                           | None (61) Open (65) Shorted (127) Measurement error (140) Bad calibration data (139) Ambient error (9) RTD error (14) Fail (32) Math error (1423) Not sourced (246) Stale (1617) Can't process (1659) |          | Instance 1 Map 1 Map 2 3056      | 0x7D<br>(125)<br>1<br>0x1D (29)                    |                   | 25029             | uint<br>R                                          |
| be read                 | alues will be rounded off to fit in with other interfaces.  Ie with PM4, PM8 and PM9 r         | the four-character display. Full va                                                                                                                                                                   | lues can |                                  |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play                           | Parameter name<br>Description                                                                             | Range                                                                                                                                                                                                 | Default | Modbus<br>Relative Ad-<br>dress | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|----------------------------------------------------|-------------------|-------------------|----------------------------------------------------|
| 5oF* oPEr Special                      | Output Function Menu                                                                                      |                                                                                                                                                                                                       |         |                                 |                                                    |                   |                   |                                                    |
| <b>5</b> <i>u,R</i><br>[ Sv.A]         | Special Output Function (1) Source Value 1 View the value of Source A which is connected to Loop Power 1. | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    |         | Instance 1 Map 1 Map 2 3852     | 0x87 (135)<br>1<br>7                               |                   | 35007             | float<br>R                                         |
| <b>5</b> <i>u.</i> <b>b</b><br>[ Su.b] | Special Output Function (1) Source Value 2 View the value of Source B which is connected to Loop Power 2. | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    |         | Instance 1 Map 1 Map 2 3854     | 0x87 (135)<br>1<br>8                               |                   | 35008             | float<br>R                                         |
| [ o.v1]                                | Special Output Function (1) Output Value 1 View the value of this function's Output 1.                    | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    |         | Instance 1 Map 1 Map 2 3858     | 0x87 (135)<br>1<br>0xA (10)                        |                   | 35010             | float<br>R                                         |
| <u>อ.บ 2</u><br>[ o.v2]                | Special Output Function (1) Output Value 2 View the value of this function's Output 2.                    | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                    |         | Instance 1 Map 1 Map 2 3862     | 0x87 (135)<br>1<br>0xC (12)                        |                   | 35012             | float<br>R                                         |
| No<br>Dis-<br>play                     | Special Output Function (1) Output Error 1 View reported cause for output malfunction.                    | None (61) Open (65) Shorted (127) Measurement error (140) Bad calibration data (139) Ambient error (9) RTD error (14) Fail (32) Math error (1423) Not sourced (246) Stale (1617) Can't process (1659) |         | Instance 1 Map 1 Map 2 3860     | 0x87 (135)<br>1<br>0x0B (11)                       |                   | 35011             | uint<br>R                                          |
| No<br>Dis-<br>play                     | Special Output Function (1) Output Error 2 View reported cause for output malfunction.                    | None (61) Open (65) Shorted (127) Measurement error (140) Bad calibration data (139) Ambient error (9) RTD error (14) Fail (32) Math error (1423) Not sourced (246) Stale (1617) Can't process (1659) |         | Instance 1 Map 1 Map 2 3940     | 0x87 (135)<br>1<br>0x0D (13)                       |                   | 35013             | uint<br>R                                          |
| be read                                |                                                                                                           |                                                                                                                                                                                                       |         |                                 |                                                    |                   |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play         | Parameter name<br>Description                                                                      | Range                                                                                                                                                                                                                                    | Default                                                              | Modbus<br>Relative Ad-<br>dress                                                                                                                                        | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec)                                                  | Profibus<br>Index                                                       | Param-<br>eter ID                                    | Data<br>Type<br>& Read/<br>Write                   |
|----------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| Profile 1            | Status Menu<br>Menu appears if:<br>R, B*, N, E*]                                                   | )                                                                                                                                                                                                                                        | * Some pa<br>currentl<br>able per<br>file Stat<br>immedia<br>Changes | le with PM8/9 only<br>arameters in the P<br>y running profile,<br>sonnel and with cous Menu will not on<br>the impact on the part of the profile pand will also have a | rofile Status<br>but should or<br>aution. Chan-<br>change the st<br>profile that is<br>arameters in | nly be chang<br>ging parame<br>ored profile<br>running.<br>the Profilin | ged by kn<br>eters via t<br>but will l<br>ng Pages v | owledge-<br>the Pro-<br>have an<br>will be         |
| [P.Str]              | Profile Status Profile Start Select step to act upon.                                              | 1 to 40                                                                                                                                                                                                                                  | 1                                                                    | Instance 1 Map 1 Map 2 2520 4340                                                                                                                                       | 0x7A (122)<br>1<br>1                                                                                | 204                                                                     | 22001                                                | uint<br>RW                                         |
| [PACr]               | Profile Status Action Request                                                                      | None (61)     Step   Step   Start (89)     End   Terminate (148)     FSU   Resume (147)     PRUS   Pause (146)     Prof   Profile (77)                                                                                                   | None                                                                 | Instance 1 Map 1 Map 2 2540 4360                                                                                                                                       | 0x7A (122)<br>1<br>0xB (11)                                                                         | 205                                                                     | 22011                                                | uint<br>RW                                         |
| [ StP]               | Profile Status Step View the currently running step.                                               | 1 to 40                                                                                                                                                                                                                                  | 0 (none)                                                             | Instance 1 Map 1 Map 2 2526 4346                                                                                                                                       | 0x7A (122)<br>1<br>4                                                                                |                                                                         | 22004                                                | uint<br>R                                          |
| [S.typ]              | Profile Status Active Step Type View the currently running step type.                              | ## Unused Step (50)    End   End (27)   JL   Jump Loop (116)   Lo   Wait For Time (1543)   Lubo   Wait For Both (210)   Lup   Wait For Process (209)   Lup   Wait For Event (144)   Sorh   Soak (87)   L   Time (143)   FREE   Rate (81) |                                                                      | Instance 1 Map 1 Map 2 2544 4364                                                                                                                                       | 0x7A (122)<br>1<br>0xD (13)                                                                         |                                                                         | 22013                                                | uint<br>R                                          |
| [tg.SP]              | Profile Status *Target Set Point Loop 1 View or change the target set point of the current step.   | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                                                       | 0.0°F<br>or<br>units<br>-18.0°C                                      | Instance 1 Map 1 Map 2 2542 4362                                                                                                                                       | 0x7A (122)<br>1<br>0xC (12)                                                                         |                                                                         | 22012                                                | float<br>RW                                        |
| <b>E.5P2</b> [tg.SP] | Profile Status *Target Set Point Loop 2 View or change the target set point of the current step.   | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                                                       | 0.0°F<br>or<br>units<br>-18.0°C                                      | Instance 1 Map 1 Map 2 4434                                                                                                                                            | 0x7A (122)<br>1<br>0x30 (48)                                                                        |                                                                         | 22048                                                | float<br>RW                                        |
| [AC.<br>SP]          | Profile Status Produced Set Point 1 Display the current set point, even if the profile is ramping. | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                                                       | 0.0°F<br>or<br>units<br>-18.0°C                                      | Instance 1 Map 1 Map 2                                                                                                                                                 |                                                                                                     |                                                                         | 22005                                                | float<br>R                                         |
| [P.SP2]              | Profile Status Produced Set Point 2 Display the current set point, even if the profile is ramping. | -1,999.000 to 9,999.000°F<br>or units<br>-1,128.000 to 5,537.000°C                                                                                                                                                                       | 0.0°F<br>or<br>units<br>-18.0°C                                      | Instance 1 Map 1 Map 2                                                                                                                                                 |                                                                                                     |                                                                         | 22051                                                | float<br>R                                         |
| be read              | alues will be rounded off to fit in with other interfaces.                                         | the four-character display. Full va                                                                                                                                                                                                      | lues can                                                             |                                                                                                                                                                        |                                                                                                     |                                                                         |                                                      | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play       | Parameter name<br>Description                                                                                                                                                      | Range                                    | Default | Modbus<br>Relative Ad-<br>dress        | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Profibus<br>Index                                  | Param-<br>eter ID | Data<br>Type<br>& Read/<br>Write |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|----------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------|----------------------------------|
| hour<br>[hoUr]     | Profile Status Hours Step time remaing in hours.                                                                                                                                   | 0 to 99                                  | 0       | Instance 1 Map 1 Map 2 4494            | 0x7A (122)<br>1<br>0x4E (78)                       |                                                    | 22078             | uint<br>RW                       |
| [ Min]             | Profile Status Minutes Step time remaing in minutes.                                                                                                                               | 0 to 59                                  | 0       | Instance 1 Map 1 Map 2 4492            | 0x7A (122)<br>1<br>0x4D (77)                       |                                                    | 22077             | uint<br>RW                       |
| [ SEC]             | Profile Status Seconds Step time remaing in seconds.                                                                                                                               | 0 to 59                                  | 0       | Instance 1 Map 1 Map 2 4490            | 0x7A (122)<br>1<br>0x4C (76)                       |                                                    | 22076             | uint<br>RW                       |
| Ent 1<br>[Ent1]    | Profile Status  Event 1  View or change the event output states.                                                                                                                   | Off (62) On (63)                         | Off     | Instance 1 Map 1 Map 2 2546 4366       | 0x7A (122)<br>1<br>0xE (14)                        |                                                    | 22014             | uint<br>RW                       |
| [Ent2]             | Profile Status Event 2 View or change the event output states.                                                                                                                     | <b>OFF</b> Off (62)<br><b>On</b> On (63) | Off     | Instance 1 Map 1 Map 2 2548 4368       | 0x7A (122)<br>1<br>0xF (15)                        |                                                    | 22015             | uint<br>RW                       |
| [ JC]              | Profile Status  Jump Count Remaining  View the jump counts remaining for the current loop. In a profile with nested loops, this may not indicate the actual jump counts remaining. | 0 to 9,999                               | 0       | Instance 1 Map 1 Map 2 2538 4358       | 0x7A (122)<br>1<br>0xA (10)                        |                                                    | 22010             | uint<br>R                        |
| No<br>Dis-<br>play | Profile Status Profile State Read currentProfile state.                                                                                                                            | Off (62)<br>Running (149)<br>Pause (146) |         | Instance 1<br>Map 1 Map 2<br>2522 4342 | 0x7A (122)<br>1<br>2                               |                                                    | 22002             | uint<br>R                        |
| No<br>Dis-<br>play | Profile Status Current File Indicates current file being executed.                                                                                                                 | 1 to 4                                   | 0       | Instance 1<br>Map 1 Map 2<br>2524 4344 | 0x7A (122)<br>1<br>3                               |                                                    | 22003             | uint<br>R                        |
| be read            | ulues will be rounded off to fit in with other interfaces.                                                                                                                         |                                          |         |                                        |                                                    | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |                   |                                  |

# **6** Chapter 6: Setup Page

## **Navigating the Setup Page**

To navigate to the Setup Page, follow the steps below:

- From the Home Page, press both the Up ◆ and Down ◆ keys for six seconds. will appear in the upper display and feether will appear in the lower display.
- 2. Press the Up or Down key to view available menus
- Press the Advance Key 
  to enter the menu of choice.
- 4. If a submenu exists (more than one instance), press the Up **⊙** or Down **⊙** key to select and then press

the Advance Key (a) to enter.

- 5. Press the Up **O** or Down **O** key to move through available menu prompts.
- 6. Press the Infinity Key **②** to move backwards through the levels: parameter to submenu; submenu to menu; menu to Home Page.
- 7. Press and hold the Infinity Key © for two seconds to return to the Home Page.

On the following pages, top level menus are identified with a yellow background color.

#### Note:

Some of these menus and parameters may not appear, depending on the controller's options. See model number information in the Appendix for more information. If there is only one instance of a menu, no submenus will appear.

#### Note

Some of the listed parameters may not be visible. Parameter visibility is dependent upon controller part number.

| Analog Input Menu    Analog Input (1 to 2)   SEn Sensor Type   In TC Linearization   Lin TC Linearization   Scale High   Lin Scale Low   Shi Scale High   Lin Range Low   Lin Range High   PEE Process Error Enable   PEE Process Error Low Value   Lin Thermistor Curve   Lin Ther | oP.3 Output Point 3  iP.4 Input Point 4  oP.9 Output Point 4  iP.5 Input Point 5  oP.5 Output Point 6  oP.6 Output Point 7  oP.7 Output Point 7  iP.8 Input Point 8  oP.8 Output Point 8  oP.9 Output Point 9  oP.9 Output Point 9  oP.9 Output Point 10  oP.10 Output Point 10  oP.10 Output Point 10  Pu*  SEE Process Value Menu  I  Pu Process Value (1 to 2)  Fo Function | ahi Output High Power Scale LEW Active Level Fon Action Function Fil Function Instance  LIPT  SEE Limit Menu L.5d Limit Sides Lhy Limit Hysteresis  SPLh Set Point High Limit  SPLL Set Point Low Limit Lh5 Limit High Set Point ** LL5 Limit Low Set Point **  LL5 Limit Low Set Point **  SIR Source Function A **  SIR Source Instance A **  LLC Limit Clear Request ** L.5E Limit Status **  L.1E Integrate with System  LOP  SEE Control Loop Menu |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P.E. Process Error Enable P.E. Process Error Low Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Output Point 9 P. ID Input Point 10                                                                                                                                                                                                                                                                                                                                            | SFnA Source Function A **  5 .A Source Instance A **                                                                                                                                                                                                                                                                                                                                                                                                    |
| Resistance Range Fil Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                | L.5E Limit Status **                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dEL Display Precision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                | SEE Control Loop Menu  [ [ ] [ Loop ] Control Loop (1 to 2) [ Loop ] Heat Algorithm                                                                                                                                                                                                                                                                                                                                                                     |
| Loc*  5EE Linearization Menu  Loc Linearization (1 to 2)  Fo Function  Unit Units  PI Input Point 1  PI Input Point 1  PI Input Point 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Filer  dia  5EE Digital Input/Output Menu  5  dia Digital I/O (5 to 12)  dir Direction  Fa Output Function  File Output Function Instance  ale Output Control  ale Output Time Base                                                                                                                                                                                            | CAS Cool Algorithm C.C. Cool Output Curve APb Heat Proportional Band AAS Heat Hysteresis CPb Cool Proportional Band CAS Cool Hysteresis E Time Integral E d Time Derivative db Dead Band EEUn TRU-TUNE+ Enable Ebnd TRU-TUNE+ Band                                                                                                                                                                                                                      |

- \* Available with PM4, PM8 and PM9 models only
- \*\* These parameters/prompts are available with firmware revisions 11.0 and above.

| E.g. TRU-TUNE+ Gain                                     | Curr                                                              | [בסרק]                                                                           |
|---------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
| RESP Autotune Set Point                                 | <b>5E</b> Current Menu                                            | <b>5EE</b> Communications Menu                                                   |
| ERBr Autotune Aggressiveness P.JL Peltier Delay         | Correct Sides                                                     | [ ]<br>[ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [                                       |
| Remote Set Point Enable                                 | Current Read Enable  Code Current Detection                       | [[]] Communications (1 to 2)  [F[]] Protocol                                     |
| c. Ey Remote Set Point Type                             | Threshold                                                         | R. 5 Standard Bus Address                                                        |
| <b>UFR</b> User Failure Action                          | [.5] Input Current Scaling                                        | <b>BAUd</b> Baud Rate                                                            |
| FR L Input Error Failure                                | [.oF5] Heater Current Offset                                      | PAr Parity                                                                       |
| FIRE Power Potent Froble                                | Current Output Source                                             | Modbus Word Order                                                                |
| L.dE Open Loop Detect Enable L.dE Open Loop Detect Time | Instance                                                          | ፲ <u>.</u> . IP Address Mode<br>፲ <i>.</i>                                       |
| L.dd Open Loop Detect Deviation                         | <u> </u>                                                          | PF2 IP Fixed Address Part 2                                                      |
| Ramp Action                                             | 5EE Math Menu                                                     | 7.F.F 3 IP Fixed Address Part 3                                                  |
| r.51 Ramp Scale                                         | Fn Function  5Fn Source Function E                                | IP Fixed Address Part 4                                                          |
| r,r Ł Ramp Rate                                         | 5 LE Source Instance E                                            | PF5 IP Fixed Address Part 5                                                      |
| L.5P Low Set Point b.5P High Set Point                  | 5.Lo Scale Low                                                    | .P.F. IP Fixed Address Part 6 .P.S. I IP Fixed Subnet Part 1                     |
| [.5P] Closed Loop Set Point                             | Scale High                                                        | 19.52 IP Fixed Subnet Part 2                                                     |
| d.5 Idle Set Point                                      | Range Low                                                         | 7.53 IP Fixed Subnet Part 3                                                      |
| 5P.L.o Set Point Open Limit Low                         | Range High<br>Fi_L Filter                                         | 7.54 IP Fixed Subnet Part 4                                                      |
| 5Ph. Set Point Open Limit High                          |                                                                   | P.55 IP Fixed Subnet Part 5                                                      |
| <u>の5P</u> Open Loop Set Point<br>これて Control Mode      | 5oF*                                                              | P.56 IP Fixed Subnet Part 6                                                      |
|                                                         | 5EE Special Output Function Menu Fo Function                      | , <u>P.9.1</u> IP Fixed Gateway Part 1<br>, <u>P.9.2</u> IP Fixed Gateway Part 2 |
| ot Pt                                                   | 5F.A Source Function A                                            | 793 IP Fixed Gateway Part 3                                                      |
| 5EE Output Menu                                         | 5 R Source Instance A                                             | 7.94 IP Fixed Gateway Part 4                                                     |
| Output (1 to 4)                                         | 5Fn.b Source Function B                                           | 7.95 IP Fixed Gateway Part 5                                                     |
| Fn Output Function                                      | 5 .b Source Instance B                                            | .P.96 IP Fixed Gateway Part 6                                                    |
| F Output Function Instance                              | Pans Power On Level 1 Pars Power Off Level 1                      | 「アルチ」 Modbus TCP Enable<br>「F・アド」 EtherNet/IP Enable                             |
| o.[] Output Control                                     | Ponb Power On Level 2                                             | Roab CIP Implicit Assembly                                                       |
| o.Lo Output Time Base O.Lo Output Low Power Scale       | PoF.b Power Off Level 2                                           | Output Member Quantity                                                           |
| Ottput Low Power Scale                                  | on Time                                                           | R LOB CIP Implicit Assembly In-                                                  |
| ot Pt Output Process (1, 3)                             | oF.E Off Time                                                     | put Member Quantity                                                              |
| o. E y Output Type                                      | E.E. Valve Travel Time                                            | F Display Units                                                                  |
| Fn Output Function                                      |                                                                   | 「アスタ」 Data Map<br>「ロッち] Non-Volatile Save                                        |
| r.5r Retransmit Source F. Output Function Instance      |                                                                   |                                                                                  |
| 5, cale Low                                             | 5EE Function Key Menu                                             | <u>r Ł C</u> *<br><b>5 E Ł</b> Real Time Clock                                   |
| 5,h , Scale High                                        | I I                                                               | holle Hours                                                                      |
| r.Lo Range Low                                          | Function Key (1 to 2)                                             | [?? Minutes                                                                      |
| Range High                                              | LEU Active Level                                                  | שם Day of Week                                                                   |
| o.Lo Output Low Power Scale                             | Fn Action Function                                                |                                                                                  |
| Calibration Offset                                      | F. Function Instance                                              |                                                                                  |
|                                                         |                                                                   |                                                                                  |
| 月上アウ<br>  _ 5 <i>E E</i> Alarm Menu                     | 9L b L<br>5E E Global Menu                                        |                                                                                  |
|                                                         | [ F Display Units                                                 |                                                                                  |
| $\overline{RL\Gamma 7}$ Alarm (1 to 4)                  | RELF AC Line Frequency                                            |                                                                                  |
| REY Alarm Type                                          | г. Е ЧР Ramping Type                                              |                                                                                  |
| 5r,8 Alarm Source 75,8 Alarm Source Instance            | P.E. Profile Type                                                 |                                                                                  |
| Loop Control Loop                                       | <b>95</b> Guaranteed Soak Enable <b>95</b> Guaranteed Soak Devia- |                                                                                  |
| Rhy Alarm Hysteresis                                    | tion 1                                                            |                                                                                  |
| RL 9 Alarm Logic                                        | 9582 Guaranteed Soak Devia-                                       |                                                                                  |
| Alarm Sides                                             | tion 2                                                            |                                                                                  |
| ALO Alarm Low Set Point Ah , Alarm High Set Point       | 5 .B Source Instance A 5 .B Source Instance B                     |                                                                                  |
| R.L. R. Alarm Latching                                  | Pot Power Off Time                                                |                                                                                  |
| R.b.L Alarm Blocking                                    | [LEd Communications LED Act-                                      |                                                                                  |
| 8,5, Alarm Silencing                                    | ion                                                               |                                                                                  |
| R.d5P Alarm Display                                     | ZonE Zone                                                         |                                                                                  |
| R.L. Alarm Delay Time R.L. Alarm Clear Request          | [h8n] Channel<br>dPr5 Display Pairs                               |                                                                                  |
| R.5 / Alarm Silence Request                             | de Display Time                                                   |                                                                                  |
| R.5E Alarm State                                        | USr.5 User Settings Save                                          |                                                                                  |
|                                                         | USc.c User Settings Restore                                       |                                                                                  |

<sup>\*</sup> Available with PM4, PM8 and PM9 models only

| Dis-<br>play   | Parameter Name<br>Description                                                                                                                                                           | Range                                                                                                                                                                         | Default     | Modbus Rela-<br>tive<br>Address                                                   | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| SEE<br>Analog  | Input Menu                                                                                                                                                                              |                                                                                                                                                                               |             |                                                                                   |                                                    |                        |              |                                                    |
| SEn [SEn]      | Analog Input (1 to 2) Sensor Type Set the analog sensor type to match the device wired to this input.  Note: There is no open-sensor detection for process inputs.                      | □FF Off (62) □LT Thermocouple (95) □LT Volts dc (104) □LT Williamps dc (112) □LT RTD 100 Ω (113) □LT RTD 1,000 Ω (114) □LT POLE Potentiometer 1 kΩ (155) □LT Thermistor (229) | Off         | Instance 1   Map 1   Map 2   368   368     Instance 2   Map 1   Map 2   448   458 | 0x68 (104)<br>1 to 2<br>5                          | 3                      | 4005         | uint<br>RWES                                       |
| Lin]           | Analog Input (1 to 2) TC Linearization Set the linearization to match the thermocouple wired to this input.                                                                             | b B (11)       H K (48)         L C (15)       n N (58)         d D (23)       r R (80)         E E (26)       5 S (84)         F F (30)       L T (93)         J J (46)      | J           | Instance 1   Map 1   Map 2   370   370   Instance 2   Map 1   Map 2   450   460   | 0x68 (104)<br>1 to 2<br>6                          | 4                      | 4006         | uint<br>RWES                                       |
| [ rt.L]        | Analog Input (1 to 2)  RTD Leads  Set to match the number of leads on the RTD wired to this input.                                                                                      | <b>2</b> 2 (1)<br><b>3</b> 3 (2)                                                                                                                                              | 2           | Instance 1   Map 1   Map 2   372   368   Instance 2   Map 1   Map 2   452   462   | 0x68 (104)<br>1 to 2<br>7                          |                        | 4007         | uint<br>RWES                                       |
| Unit<br>[Unit] | Analog Input (1 to 2) Units Set the type of units the sensor will measure.                                                                                                              | REP Absolute Temperature (1540)  rh Relative Humidity (1538)  Pro Process (75)  Plut Power (73)                                                                               | Process     | Instance 1   Map 1   Map 2     442   Instance 2   Map 1   Map 2     532           | 0x68 (104)<br>1 to 2<br>0x2A (42)                  | 5                      | 4042         | uint<br>RWES                                       |
| [ S.Lo]        | Analog Input (1 to 2) Scale Low Set the low scale for process inputs. This value, in millivolts, volts or milliamps, will correspond to the Range Low output of this function block.    | -100.0 to 1,000.0                                                                                                                                                             | 0.0         | Instance 1   Map 1   Map 2   388   388   Instance 2   Map 1   Map 2   468   478   | 0x68 (104)<br>1 to 2<br>0xF (15)                   | 6                      | 4015         | float<br>RWES                                      |
| [ S.hi]        | Analog Input (1 to 2) Scale High Set the high scale for process inputs. This value, in millivolts, volts or milliamps, will correspond to the Range High output of this function block. | -100.0 to 1,000.0                                                                                                                                                             | 20.0        | Instance 1   Map 1   Map 2   390   390   Instance 2   Map 1   Map 2   470   480   | 0x68 (104)<br>1 to 2<br>0x10 (16)                  | 7                      | 4016         | float<br>RWES                                      |
| r.Lo           | Analog Input (1 to 2) Range Low Set the low range for this function block's output.                                                                                                     | -1,999.000 to 9,999.000                                                                                                                                                       | 0.0         | Instance 1   Map 1   Map 2   392   392   Instance 2   Map 1   Map 2   472   482   | 0x68 (104)<br>1 to 2<br>0x11 (17)                  | 8                      | 4017         | float<br>RWES                                      |
| with othe      | lues will be rounded off to fit in ter interfaces.  e with PM4, PM8 and PM9 m                                                                                                           | he four-character display. Full values                                                                                                                                        | can be read |                                                                                   |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play      | Parameter Name<br>Description                                                                                                                     | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default     | Modbus Relative Address                                                                        | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [ r.hi]           | Analog Input (1 to 2) Range High Set the high range for this function block's output.                                                             | -1,999.000 to 9,999.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9,999       | Instance 1   Map 1   Map 2   394   394   Instance 2   Map 1   Map 2   474   484                | 0x68 (104)<br>1 to 2<br>0x12 (18)                  | 9                      | 4018              | float<br>RWES                                      |
| PEE<br>[P.EE]     | Analog Input (1 to 2) Process Error Enable Turn the Process Error Low feature on or off.                                                          | <b>○FF</b> Off (62)<br><b>Loud</b> Low (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Off         | Instance 1 Map 1 Map 2 418 388 Instance 2 Map 1 Map 2 498 508                                  | 0x68 (104)<br>1 to 2<br>0x1E (30)                  | 10                     | 4030              | uint<br>RWES                                       |
| P.E.L.<br>[ P.EL] | Analog Input (1 to 2) Process Error Low Value If the process value drops below this value, it will trigger an input error.                        | -100.0 to 1,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0         | Instance 1   Map 1   Map 2   420   420   Instance 2   Map 1   Map 2   500   510                | 0x68 (104)<br>1 to 2<br>0x1F (31)                  | 11                     | 4031              | float<br>RWES                                      |
| [ t.C]            | Analog Input (1 to 2)  Thermistor Curve  Select a curve to apply to the thermistor input.                                                         | R Curve A (1451)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Curve A     | Instance 1<br>  Map 1   Map 2<br>  434   434<br>  Instance 2<br>  Map 1   Map 2<br>  514   524 | 0x68 (104)<br>1 to 2<br>20x6 (38)                  |                        | 4038              | uint<br>RWES                                       |
| [ r.r]            | Analog Input (1 to 2) Resistance Range Set the maximum resistance of the thermistor input.                                                        | 5 5K (1448)<br>10 10K (1360)<br>20 20K (1361)<br>40K (1449)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40K         | Instance 1   Map 1   Map 2   432   432   Instance 2   Map 1   Map 2   512   522                | 0x68 (104)<br>1 to 2<br>0x25 (37)                  |                        | 4037              | uint<br>RWES                                       |
| [ FiL]            | Analog Input (1 to 2) Filter Filtering smooths out the process signal to both the display and the input. Increase the time to increase filtering. | 0.0 to 60.0 seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5         | Instance 1   Map 1   Map 2   386   386   Instance 2   Map 1   Map 2   466   476                | 0x68 (104)<br>1 to 2<br>0xE (14)                   | 12                     | 4014              | float<br>RWES                                      |
| i.Er]             | Analog Input (1 to 2) Input Error Latching Turn input error latching on or off. If latching is on, errors must be manually cleared.               | off (62) on On (63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Off         | Instance 1 Map 1 Map 2 414 414 Instance 2 Map 1 Map 2 494 504                                  | 0x68 (104)<br>1 to 2<br>0x1C (28)                  |                        | 4028              | uint<br>RWES                                       |
| dec]              | Analog Input (1 to 2)  Display Precision  Set the precision of the displayed value.                                                               | ### Whole (105)  ### Control   Contr | Whole       | Instance 1 Map 1 Map 2 398 398 Instance 2 Map 1 Map 2 478 488                                  | 0x68 (104)<br>1 to 2<br>0x14 (20)                  |                        | 4020              | uint<br>RWES                                       |
| with othe         | lues will be rounded off to fit in the rinterfaces.                                                                                               | the four-character display. Full values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | can be read |                                                                                                |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play      | Parameter Name<br>Description                                                                                                                                                                                                                                                           | Range                                                                                                                                                                                                          | Default     | Modbus Relative Address                                                         | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| [ S.bA]           | Analog Input (1 to 2) Sensor Backup Enable sensor backup.                                                                                                                                                                                                                               | <b>OFF</b> Off (62) On (63)                                                                                                                                                                                    | Off         | Instance 1   Map 1   Map 2   410   410   Instance 2   Map 1   Map 2   490   500 | 0x68 (104)<br>1 to 2<br>0x1A (26)                  |                        | 4026         | uint<br>RWES                                       |
| [i.CA]            | Analog Input (1 to 2) Calibration Offset Offset the input reading to compensate for lead wire resistance or other factors that cause the in- put reading to vary from the actual process value.                                                                                         | -1,999.000 to 9,999.000°F or<br>units<br>-1,110.555 to 5,555.000°C                                                                                                                                             | 0.0         | Instance 1   Map 1   Map 2   382   382   Instance 2   Map 1   Map 2   462   472 | 0x68 (104)<br>1 to 2<br>0x0C (12)                  | 2                      | 4012         | float<br>RWES                                      |
| [Ain]             | Analog Input (1 to 2) Analog Input Value View the process value. Note: Ensure that the Input Error Status (below) indicates no error (61) when reading this value using a field bus protocol. If an error exists, the last known value prior to the er- ror occurring will be returned. | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C                                                                                                                                             |             | Instance 1 Map 1 Map 2 360 360 Instance 2 Map 1 Map 2 440 450                   | 0x68 (104)<br>1 to 2<br>1                          | 0                      | 4001         | float<br>R                                         |
| i.Er              | Analog Input (1 to 2) Input Error Status View the cause of the most recent error. If the REED message is Er. 1 or Er. 2, this parameter will display the cause of the input error.                                                                                                      | none None (61)  [PEn] Open (65)  [Shrt] Shorted (127)  [En] Measurement Error (149)  [En] Bad Calibration Data (139)  [En] Ambient Error (9)  [En] RTD Error (141)  [FR] I Fail (32)  [ISTC] Not Sourced (246) | None        | Instance 1 Map 1 Map 2 362 362 Instance 2 Map 1 Map 2 442 452                   | 0x68 (104)<br>1 to 2<br>2                          | 1                      | 4002         | float<br>R                                         |
| Lnr* 5EE Lineariz | zation Menu                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |             |                                                                                 |                                                    |                        |              |                                                    |
| [ Fn]             | Linearization (1 to 2) Function Set how this function will linearize Source A which is Analog Input 1. Source A of Linearization 2 is Analog Input 2.                                                                                                                                   | off (62) interpolated (1482)                                                                                                                                                                                   | Off         | Instance 1   Map 1   Map 2     3568     Instance 2   Map 1   Map 2     3638     | 0x86 (134)<br>1 to 2<br>5                          | 155                    | 34005        | uint<br>RWES                                       |
| with othe         | lues will be rounded off to fit in the riter are the riter are seen.  e with PM4, PM8 and PM9 n                                                                                                                                                                                         | the four-character display. Full values                                                                                                                                                                        | can be read |                                                                                 |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play                         | Parameter Name<br>Description                                                                                            | Range                                                                                                                                                        | Default     | Modbus Rela-<br>tive<br>Address                                                          | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| Unit [Unit]                          | Linearization (1 to 2) Units Set the units of Source A or Analog Input 1. Source A of Linearization 2 is Analog Input 2. | Src Source (1539) rh Relative Humidty (1538) Pro Process (75) Plur Power (73) rkP Relative Temperature (1541) RkP Absolute Temperature (1540) none None (61) | Source      | Instance 1   Map 1   Map 2     3616   Instance 2   Map 1   Map 2     3686                | 0x86 (134)<br>1 to 2<br>0x29 (41)                  | 156                    | 34029             | uint<br>RWES                                       |
| [ ip.1]                              | Linearization (1 to 2) Input Point 1 Set the value that will be mapped to output 1.                                      | -1,999.000 to 9,999.000                                                                                                                                      | 0.0         | Instance 1   Map 1   Map 2                                                               | 0x86 (134)<br>1 to 2<br>8                          | 157                    | 34008             | float<br>RWES                                      |
| <b>ο</b> <i>P</i> , <i>I</i> [ op.1] | Linearization (1 to 2) Output Point 1 Set the value that will be mapped to input 1.                                      | -1,999.000 to 9,999.000                                                                                                                                      | 0.0         | Instance 1   Map 1   Map 2     3594   Instance 2   Map 1   Map 2     3664                | 0x86 (134)<br>1 to 2<br>0x12 (18)                  | 158                    | 34018             | float<br>RWES                                      |
| [ ip.2]                              | Linearization (1 to 2) Input Point 2 Set the value that will be mapped to output 2.                                      | -1,999.000 to 9,999.000                                                                                                                                      | 1.0         | Instance 1   Map 1   Map 2     3576   Instance 2   Map 1   Map 2     3646                | 0x86 (134)<br>1 to 2<br>9                          | 159                    | 34009             | float<br>RWES                                      |
| [ op.2]                              | Linearization (1 to 2) Output Point 2 Set the value that will be mapped to input 2.                                      | -1,999.000 to 9,999.000                                                                                                                                      | 1.0         | Instance 1<br>  Map 1   Map 2<br>    3597<br>  Instance 2<br>  Map 1   Map 2<br>    3667 | 0x86 (134)<br>1 to 2<br>0x13 (19)                  | 160                    | 34019             | float<br>RWES                                      |
| [ ip.3]                              | Linearization (1 to 2) Input Point 3 Set the value that will be mapped to output 3.                                      | -1,999.000 to 9,999.000                                                                                                                                      | 2.0         | Instance 1<br>  Map 1   Map 2<br>    3578<br>  Instance 2<br>  Map 1   Map 2<br>    3648 | 0x86 (134)<br>1 to 2<br>0xA (10)                   | 161                    | 34010             | float<br>RWES                                      |
| <b>оР.З</b><br>[ op.3]               | Linearization (1 to 2) Output Point 3 Set the value that will be mapped to input 3.                                      | -1,999.000 to 9,999.000                                                                                                                                      | 2.0         | Instance 1 Map 1 Map 2 3598 Instance 2 Map 1 Map 2 3668                                  | 0x86 (134)<br>1 to 2<br>0x14 (20)                  | 162                    |                   | float<br>RWES                                      |
| [ ip.4]                              | Linearization (1 to 2) Input Point 4 Set the value that will be mapped to output 4.                                      | -1,999.000 to 9,999.000                                                                                                                                      | 3.0         | Instance 1 Map 1 Map 2 3581 Instance 2 Map 1 Map 2 3651                                  | 0x86 (134)<br>1 to 2<br>0xB (11)                   | 163                    | 34011             | float<br>RWES                                      |
| with othe                            | llues will be rounded off to fit in error interfaces.                                                                    | the four-character display. Full values                                                                                                                      | can be read |                                                                                          |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play            | Parameter Name<br>Description                                                         | Range                                   | Default     | Modbus Rela-<br>tive<br>Address                                             | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|-------------|-----------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [ op.4]                 | Linearization (1 to 2) Output Point 4 Set the value that will be mapped to input 4.   | -1,999.000 to 9,999.000                 | 3.0         | Instance 1 Map 1 Map 2 3600 Instance 2 Map 1 Map 2 3670                     | 0x86 (134)<br>1 to 2<br>0x15 (21)                  | 164                    | 34021             | float<br>RWES                                      |
| [ ip.5]                 | Linearization (1 to 2) Input Point 5 Set the value that will be mapped to output 5.   | -1,999.000 to 9,999.000                 | 4.0         | Instance 1 Map 1 Map 2 3582 Instance 2 Map 1 Map 2 3652                     | 0x86 (134)<br>1 to 2<br>0xC (12)                   | 165                    | 34012             | float<br>RWES                                      |
| <b>оР.5</b><br>[ op.5]  | Linearization (1 to 2) Output Point 5 Set the value that will be mapped to input 5.   | -1,999.000 to 9,999.000                 | 4.0         | Instance 1   Map 1   Map 2     3602     Instance 2   Map 1   Map 2     3672 | 0x86 (134)<br>1 to 2<br>0x16 (22)                  | 166                    | 34022             | float<br>RWES                                      |
| [ ip.6]                 | Linearization (1 to 2) Input Point 6 Set the value that will be mapped to output 6.   | -1,999.000 to 9,999.000                 | 5.0         | Instance 1   Map 1   Map 2     3584   Instance 2   Map 1   Map 2     3654   | 0x86 (134)<br>1 to 2<br>0xD (13)                   | 167                    | 34013             | float<br>RWES                                      |
| <b>oP.6</b><br>[ op.6]  | Linearization (1 to 2) Output Point 6 Set the value that will be mapped to input 6.   | -1,999.000 to 9,999.000                 | 5.0         | Instance 1 Map 1 Map 2 3604 Instance 2 Map 1 Map 2 3674                     | 0x86 (134)<br>1 to 2<br>0x17 (23)                  | 168                    | 34023             | float<br>RWES                                      |
| [ ip.7]                 | Linearization (1 to 2) Input Point 7 Set the value that will be mapped to output 7.   | -1,999.000 to 9,999.000                 | 6.0         | Instance 1 Map 1 Map 2 3586 Instance 2 Map 1 Map 2 3656                     | 0x86 (134)<br>1 to 2<br>0xE (14)                   | 169                    | 34014             | float<br>RWES                                      |
| <b>оР.</b> 7<br>[ op.7] | Linearization (1 to 2) Output Point 7 Set the value that will be mapped to input 7.   | -1,999.000 to 9,999.000                 | 6.0         | Instance 1 Map 1 Map 2 3606 Instance 2 Map 1 Map 2 3676                     | 0x86 (134)<br>1 to 2<br>0x18 (24)                  | 170                    | 34024             | float<br>RWES                                      |
| [ ip.8]                 | Linearization (1 to 2) Input Point 8 Set the value that will be mapped to output 8.   | -1,999.000 to 9,999.000                 | 7.0         | Instance 1 Map 1 Map 2 3588 Instance 2 Map 1 Map 2 3658                     | 0x86 (134)<br>1 to 2<br>0xF (15)                   | 171                    | 34015             | float<br>RWES                                      |
| <b>o P.8</b><br>[ op.8] | Linearization (1 to 2) Output Point 8 Set the value that will be mapped to input 8.   | -1,999.000 to 9,999.000                 | 7.0         | Instance 1 Map 1 Map 2 3608 Instance 2 Map 1 Map 2 3678                     | 0x86 (134)<br>1 to 2<br>0x19 (25)                  | 172                    | 34025             | float<br>RWES                                      |
| with othe               | lues will be rounded off to fit in ter<br>er interfaces.<br>e with PM4, PM8 and PM9 n | the four-character display. Full values | can be read |                                                                             |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play           | Parameter Name<br>Description                                                                                                                                 | Range                                                                                                                                                                                                        | Default     | Modbus Rela-<br>tive<br>Address                                                          | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [ ip.9]                | Linearization (1 to 2) Input Point 9 Set the value that will be mapped to output 9.                                                                           | -1,999.000 to 9,999.000                                                                                                                                                                                      | 8.0         | Instance 1   Map 1   Map 2     3590   Instance 2   Map 1   Map 2     3660                | 0x86 (134)<br>1 to 2<br>0x10 (16)                  | 173                    | 34016             | float<br>RWES                                      |
| <b>ер.9</b><br>[ op.9] | Linearization (1 to 2) Output Point 9 Set the value that will be mapped to input 9.                                                                           | -1,999.000 to 9,999.000                                                                                                                                                                                      | 8.0         | Instance 1<br>  Map 1   Map 2<br>    3610<br>  Instance 2<br>  Map 1   Map 2<br>    3680 | 0x86 (134)<br>1 to 2<br>0x1A (26)                  | 174                    | 34026             | float<br>RWES                                      |
| [ip.10]                | Linearization (1 to 2) Input Point 10 Set the value that will be mapped to output 10.                                                                         | -1,999.000 to 9,999.000                                                                                                                                                                                      | 9.0         | Instance 1   Map 1   Map 2                                                               | 0x86 (134)<br>1 to 2<br>0x11 (17)                  | 175                    | 34017             | float<br>RWES                                      |
| [op.10]                | Linearization (1 to 2) Output Point 10 Set the value that will be mapped to input 10.                                                                         | -1,999.000 to 9,999.000                                                                                                                                                                                      | 9.0         | Instance 1   Map 1   Map 2     3612   Instance 2   Map 1   Map 2     3682                | 0x86 (134)<br>1 to 2<br>0x1B (27)                  | 176                    | 34027             | float<br>RWES                                      |
| Fu* 5EE Process        | Value Menu                                                                                                                                                    |                                                                                                                                                                                                              |             |                                                                                          |                                                    |                        |                   |                                                    |
| [ Fn]                  | Process Value (1 to 2) Function Set the function that will be applied to the source or sources.  Note: Differential and Ratio not available using instance 2. | □FF Off (62) □SLR Vaisala RH Compensation (1648) □Jb Wet Bulb/Dry Bulb (1369) □SBR Sensor Backup (1201) □RE □ Ratio (1374) □JFF Differential (1373) □□E Square Root (1380) □RE **Pressure to Altitude (1649) | Off         | Instance 1   Map 1   Map 2     3320     Instance 2   Map 1   Map 2     3390              | 0x7E (126)<br>1 to 2<br>0x15 (21)                  | 123                    | 26021             | uint<br>RWES                                       |
| P.unt<br>[P.unt]       | Process Value (1 to 2) Pressure Units Set the units that will be applied to the source.                                                                       | P5   Pounds per Square   Inch (1671)     P85c   Pascal (1674)                                                                                                                                                | PSI         | Instance 1 Map 1 Map 2 3334 Instance 2 Map 1 Map 2 3404                                  | 0x7E (126)<br>1 to 2<br>0x1C (28)                  |                        | 26028             | uint<br>RWES                                       |
| A.unt]                 | Process Value (1 to 2) Altitude Units Set the units that will be applied to the source.                                                                       | HFE       Kilofeet (1677)         FE       Feet (1676)                                                                                                                                                       | HFt         | Instance 1   Map 1   Map 2     3336   Instance 2   Map 1   Map 2     3406                | 0x7E (126)<br>1 to 2<br>0x1D (29)                  |                        | 26029             | uint<br>RWES                                       |
| with oth               | ulues will be rounded off to fit in error interfaces.                                                                                                         | the four-character display. Full values                                                                                                                                                                      | can be read |                                                                                          |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

<sup>\*\*</sup> Pressure Altitude calculation is based on the International Standard Atmosphere 1976

| Dis-<br>play           | Parameter Name<br>Description                                                                                                              | Range                                                                                                                                                                                                                     | Default               | Modbus Rela-<br>tive<br>Address                                                          | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| <b>b.Pr</b> [ b.Pr]    | Process Value (1 to 2)  Barometric Pressure  Set the units that will be applied to the source.                                             | 10.0 to 16.0                                                                                                                                                                                                              | 14.7                  | Instance 1<br>  Map 1   Map 2<br>    3338<br>  Instance 2<br>  Map 1   Map 2<br>    3408 | 0x7E (126)<br>1 to 2<br>0x1E (30)                  |                        | 26030             | float<br>RWES                                      |
| <b>F.L</b> [FiL]       | Process Value (1 to 2) Filter Filtering smooths out the output signal of this function block. Increase the time to increase fil- tering.   | 0.0 to 60.0 seconds                                                                                                                                                                                                       | 0.0                   | Instance 1   Map 1   Map 2     3330   Instance 2   Map 1   Map 2     3400                | 0x7E (126)<br>1 to 2<br>0x1A (26)                  |                        | 26026             | float<br>RWES                                      |
| d 10<br>SEE<br>Digital | Input / Output Menu                                                                                                                        |                                                                                                                                                                                                                           |                       |                                                                                          |                                                    |                        |                   |                                                    |
| <b>d</b> .r [ dir]     | Digital Input/Output (5 to 12)  Digital I/O Direction  Set this function to operate as an input or output.                                 | DEPE Output (68)  [Lon] Input Dry Contact (44)  [Input Voltage (193)                                                                                                                                                      | Output                | Instance 1 Map 1 Map 2 1000 1120  Offset to next instance (Map 1 & Map 2) equals +30     | 0x6A (106)<br>5 to 12<br>1                         | 82                     | 6001              | uint<br>RWES                                       |
| [Fn]                   | Digital Output (5 to 12) Output Function Select what function will drive this output.                                                      | □ FF Off (62)  [Ent.] Profile Event Out B (234)  [Ent.] Profile Event Out A (233)  [5oF.] Special Function Output 2 (1533)  [5oF.] Special Function Output 1 (1532)  [Cool. Cool (161)  [ERE] Heat (160)  [ELP] Alarm (6) | Off                   | Instance 1 Map 1 Map 2 1008 1128  Offset to next instance (Map 1 & Map 2) equals +30     | 0x6A (106)<br>5 to 12<br>5                         | 83                     | 6005              | uint<br>RWES                                       |
| <b>F</b> , [Fi]        | Digital Output (5 to 12) Output Function Instance Set the instance of the function selected above.                                         | 1 to 4                                                                                                                                                                                                                    | 1                     | Instance 1 Map 1 Map 2 1010 1130  Offset to next instance (Map 1 & Map 2) equals +30     | 0x6A (106)<br>5 to 12<br>6                         | 84                     |                   | uint<br>RWES                                       |
| <b>o.[</b> E] [ o.Ct]  | Digital Output (5 to 12) Output Control Set the output control type. This parameter is only used with PID control, but can be set anytime. | Ftb Fixed Time Base (34)  Lb Variable Time Base (103)                                                                                                                                                                     | Fixed<br>Time<br>Base | Instance 1 Map 1 Map 2 1002 1122 Offset to next instance (Map 1 & Map 2) equals +30      | 0x6A (106)<br>5 to 12<br>2                         | 85                     | 6002              | uint<br>RWES                                       |
| with othe              | lues will be rounded off to fit in er interfaces.  Ie with PM4, PM8 and PM9 n                                                              | the four-character display. Full values                                                                                                                                                                                   | can be read           |                                                                                          |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play | Parameter Name<br>Description                                                                                                                                                | Range                                                                  | Default | Modbus Rela-<br>tive<br>Address                                                      | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID                                  | Data<br>Type<br>&<br>Read/<br>Write |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|-------------------------------------|
| [ o.tb]      | Digital Output (5 to 12) Output Time Base Set the time base for fixed-time-base control.                                                                                     | [ 0.1 for Fast and Bi-Directional outputs, 5.0 for Slow outputs] to 60 | 5.0     | Instance 1 Map 1 Map 2 1004 1124 Offset to next instance (Map 1 & Map 2) equals +30  | 0x6A (106)<br>5 to 12<br>3                         | 86                     | 6003                                               | float<br>RWES                       |
| [ o.Lo]      | Digital Output (5 to 12) Output Low Power Scale The power output will never be less than the value specified and will represent the value at which output scaling begins.    | 0.0 to 100.0                                                           | 0.0     | Instance 1 Map 1 Map 2 1016 1136  Offset to next instance (Map 1 & Map 2) equals +30 | 0x6A (106)<br>5 to 12<br>9                         | 87                     | 6009                                               | float<br>RWES                       |
| [ o.hi]      | Digital Output (5 to 12) Output High Power Scale The power output will never be greater than the value specified and will represent the value at which output scaling stops. | 0.0 to 100.0                                                           | 100.0   | Instance 1 Map 1 Map 2 1018 1138  Offset to next instance (Map 1 & Map 2) equals +30 | 0x6A (106)<br>5 to 12<br>0xA (10)                  | 88                     | 6010                                               | float<br>RWES                       |
|              | Digital Input (5 to 6) Active Level Select which action will be interpreted as a true state.                                                                                 | <u>ト・9</u> h High (37)<br><u>L oし</u> J Low (53)                       | High    | Instance 1 Map 1 Map 2 1320 1560  Offset to next instance (Map 1 & Map 2) equals +20 | 0x6E (110)<br>1 to 2<br>1                          | 137                    | 10001                                              | uint<br>RW                          |
|              | Digital Input (7 to 12)  Active Level  Select which action will be interpreted as a true state.                                                                              | [h , 9h   High (37)<br>[L o L J ] Low (53)                             | High    | Instance 1 Map 1 Map 2 1640 Offset to next instance Map 2 equals +20                 | 0x6E (110)<br>5 to 12<br>1                         | 137                    | 10001                                              | uint<br>RW                          |
| with othe    | lues will be rounded off to fit in<br>er interfaces.<br>e with PM4, PM8 and PM9 n                                                                                            | can be read                                                            |         |                                                                                      |                                                    |                        | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |                                     |

| Dis-<br>play | Parameter Name<br>Description                                                                                                       | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default     | Modbus Rela-<br>tive<br>Address                                                      | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| Fo Fn        | Digital Input (5 to 12) Action Function Select the function that will be triggered by a true state for Digital Inputs 5 through 12. | None (61)   S5EP   Start Step (1077)   P5ES   Profile Start/Stop, level triggered (208)   Prof   Start Profile, edge triggered (196)   Phol   Profile Hold/Resume, level triggered (207)   Phol   Profile Disable, level triggered (206)   E.J. TRU-TUNE+® Disable, level triggered (219)   OFF   Switch Control Loop Off, level triggered (90)   P7An   Manual, level triggered (54)   EUDE   Tune, edge triggered (98)   OLE   Idle Set Point, level triggered (107)   FAL   Force Alarm to occur, level triggered (218)   RoF   Control Loops Off and Alarms to Non-alarm State, level triggered (220)   S.L. Silence Alarms, edge triggered (108)   RLTT   Alarm Reset, edge triggered (217)   UST.   USET Set Restore, edge triggered (227)   LTT.   Limit Reset, edge triggered (82)   RED   Remote Set Point enable (216) | None        | Instance 1 Map 1 Map 2 1324 1564  Offset to next instance (Map 1 & Map 2) equals +20 | 0x6E (110)<br>5 to 12<br>3                         | 138                    | 10003             | uint<br>RWES                                       |
| [ Fi]        | Digital Input (5 to 12) Function Instance Select which Digital Input will be triggered by a true state.                             | 0 to 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           | Instance 1 Map 1 Map 2 1326 - Offset to next instance (Map 1 & Map 2) equals +20     | 0x6E (110)<br>5 to 12<br>4                         | 139                    | 10004             | uint<br>RWES                                       |
| Limit M      | enu                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                                      |                                                    |                        |                   |                                                    |
| [ L.Sd]      | Limit (1) Limit Sides Select which side or sides of the process value will be monitored.                                            | <b>both</b> Both (13)<br><b>h.gh</b> High (37)<br><b>Lot J</b> Low (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Both        | Instance 1 Map 1 Map 2 688 728                                                       | 0x70 (112)<br>1<br>5                               | 40                     | 12005             | uint<br>RWES                                       |
| with othe    | lues will be rounded off to fit in the riter faces. e with PM4, PM8 and PM9 n                                                       | the four-character display. Full values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | can be read |                                                                                      |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play | Parameter Name<br>Description                                                                                                                                                  | Range                                                              | Default                      | Modbus Rela-<br>tive<br>Address                                    | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [L.hy]       | Limit (1) Limit Hysteresis Set the hysteresis for the limit function. This determines how far into the safe range the process value must move before the limit can be cleared. | 0.001 to 9,999.000°F or units<br>0.001 to 5,555.000°C              | 3.0°F or<br>units<br>2.0°C   | Instance 1 Map 1 Map 2 682 722                                     | 0x70 (112)<br>1<br>2                               | 41                     | 12002             | float<br>RWES                                      |
| [SP.Lh]      | Limit (1) Set Point High Limit Set the high end of the limit set point range.                                                                                                  | -1,999.000 to 9,999.000                                            | 9,999.000                    | Instance 1           Map 1         Map 2           696         736 | 0x70 (112)<br>1<br>9                               | 42                     | 12009             | float<br>RWES                                      |
| [SP.LL]      | Limit (1) Set Point Low Limit Set the low end of the limit set point range.                                                                                                    | -1,999.000 to 9,999.000                                            | -1,999.000                   | Instance 1 Map 1 Map 2 698 738                                     | 0x70 (112)<br>1<br>0x0A (10)                       | 43                     | 12010             | float<br>RWES                                      |
| [ Lh.S]      | Limit (1) Limit High Set Point ** Set the high process value that will trigger the limit.                                                                                      | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C | 0.0°F or<br>units<br>-18.0°C | Instance 1 Map 1 Map 2 686 726                                     | 0x70 (112)<br>1<br>4                               | 39                     | 12004             | float<br>RWES                                      |
| [ LL.S]      | Limit (1) Limit Low Set Point ** Set the low process value that will trigger the limit.                                                                                        | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C | 0.0°F or<br>units<br>-18.0°C | Instance 1<br>Map 1 Map 2<br>684 724                               | 0x70 (112)<br>1<br>3                               | 38                     | 12003             | float<br>RWES                                      |
| [SFn.A]      | Limit (1) Source Function A ** Set the source for the limit reset function.                                                                                                    | nonE None (61)  d 10 Digital I/O (1142)  FUn Function Key (1001)   | None                         | Instance 1 Map 1 Map 2 748                                         | 0x70 (112)<br>1<br>0x0F (15)                       |                        | 12015             | uint<br>RWES                                       |
| [ Si.A]      | Limit (1) Source Instance A ** Set the instance of the function selected above.                                                                                                | 1 to 12                                                            | 1                            |                                                                    | 0x70 (112)<br>1<br>0x10 (16)                       |                        | 12016             | uint<br>RWES                                       |
| [LCr]        | Limit (1) Limit Clear Request  ** Clear limit once limit condition is cleared.                                                                                                 | Clear (0)<br>No Change (255)                                       |                              | Instance 1 Map 1 Map 2 680 720                                     | 0x70 (112)<br>1<br>1                               |                        | 12001             | uint<br>W                                          |
| [L.St]       | Limit (1) Limit Status ** Reflects whether or not the limit is in a safe or failed mode.                                                                                       | Fail (32)<br>Safe (1667)                                           |                              | Instance 1<br>Map 1 Map 2<br>744                                   | 0x70 (112)<br>1<br>0x0D (13)                       |                        | 12013             | uint<br>R                                          |
| with othe    | lote: Some values will be rounded off to fit in the four-character display. Full values can be read with other interfaces.  Available with PM4, PM8 and PM9 models only        |                                                                    |                              |                                                                    |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

<sup>\*\*</sup> These prompts are only available in this menu with firmware revision 11.0 and above.

| Dis-<br>play              | Parameter Name<br>Description                                                                                                                                                                             | Range                                                                     | Default                      | Modbus Rela-<br>tive<br>Address                                                                                           | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| [L.it]                    | Limit Integrate with System In a limit state the controller will turn off the outputs, terminate an active profile and freeze PID and TRU-TUNE+® calculations.                                            | no No (59)<br>YE5 Yes (106)                                               | No                           | Instance 1<br>Map 1 Map 2<br>694 734                                                                                      | 0x70 (112)<br>1<br>8                               |                        | 12008        | uint<br>RWES                                       |
| No<br>Dis-<br>play        | Limit (1) Limit State Clear limit once limit condition is cleared.                                                                                                                                        | Off (62)<br>None (61)<br>Limit High (51)<br>Limit Low (52)<br>Error (225) |                              | Instance 1<br>Map 1 Map 2<br>690 730                                                                                      | 0x70 (112)<br>1<br>6                               |                        | 12006        | uint<br>R                                          |
| LooP<br>5EE<br>Control    | Loop Menu                                                                                                                                                                                                 |                                                                           |                              |                                                                                                                           |                                                    |                        |              |                                                    |
| <b>h,89</b> [ h.Ag]       | Control Loop (1 to 2)  Heat Algorithm  Set the heat control method.                                                                                                                                       | off (62) Pid PID (71) onof On-Off (64)                                    | PID                          | Instance 1 Map 1 Map 2 1884 2364 Instance 2 Map 1 Map 2 1954 2434                                                         | 0x97 (151)<br>1 to 2<br>3                          | 72                     | 8003         | uint<br>RWES                                       |
| [ C.Ag]                   | Control Loop (1 to 2) Cool Algorithm Set the cool control method.                                                                                                                                         | off Off (62) Pid PID (71) onof On-Off (64)                                | Off                          | Instance 1 Map 1                                                                                                          | 0x97 (151)<br>1 to 2<br>4                          | 73                     | 8004         | uint<br>RWES                                       |
| [C.Cr]                    | Control Loop (1 to 2) Cool Output Curve Select a cool output curve to change the responsiveness of the system.                                                                                            | © FF Off (62)                                                             | Off                          | Instance 1       Map 1     Map 2       1888     2368       Instance 2     Map 1       Map 1     Map 2       1958     2438 | 0x97 (151)<br>1 to 2<br>5                          |                        | 8038         | uint<br>RWES                                       |
| [ h.Pb]                   | Control Loop (1 to 2) Heat Proportional Band Set the PID proportional band for the heat outputs.                                                                                                          | 0.001 to 9,999.000°F or units<br>-1,110.555 to 5,555.000°C                | 25.0°F or<br>units<br>14.0°C | Instance 1 Map 1 Map 2 1890 2370 Instance 2 Map 1 Map 2 1960 2440                                                         | 0x97<br>(151)<br>1 to 2<br>6                       | 65                     | 8009         | float<br>RWES                                      |
| <b>h,h y</b> ]<br>[ h.hy] | Control Loop (1 to 2)  Heat Hysteresis  Set the control switching hysteresis for on-off control. This determines how far into the "on" region the process value needs to move before the output turns on. | 0.001 to 9,999.000°F or units<br>0.001 to 5,555.000°C                     | 3.0°F or<br>units<br>2.0°C   | Instance 1 Map 1 Map  2 1900 2380 Instance 2 Map 1 Map  2 1970 2450                                                       | 0x97<br>(151)<br>1 to 2<br>0xB (11)                | 66                     | 8010         | float<br>RWES                                      |
| with othe                 | lues will be rounded off to fit in<br>er interfaces.<br>e with PM4, PM8 and PM9 n                                                                                                                         | the four-character display. Full values                                   | can be read                  |                                                                                                                           |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play    | Parameter Name<br>Description                                                                                                                                                                                                                                              | Range                                                 | Default                          | Modbus Rela-<br>tive<br>Address                                                       | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID                                  | Data<br>Type<br>&<br>Read/<br>Write |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|-------------------------------------|
| [ C.Pb]         | Control Loop (1 to 2) Cool Proportional Band Set the PID proportional band for the cool outputs.                                                                                                                                                                           | 0.001 to 9,999.000°F or units<br>0.001 to 5,555.000°C | 25.0°F or<br>units<br>14.0°C     | Instance 1   Map 1   Map 2   2370   Instance 2   Map 1   Map   2   1962   2442        | 0x97<br>(151)<br>1 to 2<br>7                       | 67                     | 8012                                               | float<br>RWES                       |
| [ C.hy]         | Control Loop (1 to 2) Cool Hysteresis Set the control switching hysteresis for on-off control. This determines how far into the "on" region the process value needs to move before the output turns on.                                                                    | 0.001 to 9,999.000°F or units<br>0.001 to 5,555.000°C | 3.0°F or<br>units<br>2.0°C       | Instance 1 Map 1 Map 2 1902 2382 Instance 2 Map 1 Map 2 1972 2522                     | 0x97<br>(151)<br>1 to 2<br>0xC (12)                | 68                     | 8013                                               | float<br>RWES                       |
| [ ti]           | Control Loop (1 to 2)  Time Integral  Set the PID integral for the outputs.                                                                                                                                                                                                | 0 to 9,999 seconds per repeat                         | 180.0 sec-<br>onds per<br>repeat | Instance 1 Map 1 Map 2 1894 2374 Instance 2 Map 1 Map 2 1964 2444                     | 0x97<br>(151)<br>1 to 2<br>8                       | 69                     | 8006                                               | float<br>RWES                       |
| <b>Ed</b> ]     | Control Loop (1 to 2)  Time Derivative  Set the PID derivative time for the outputs.                                                                                                                                                                                       | 0 to 9,999 seconds                                    | 0.0<br>seconds                   | Instance 1   Map 1   Map 2   1896   2376   Instance 2   Map 1   Map   2   1966   2446 | 0x97<br>(151)<br>1 to 2<br>9                       | 70                     | 8007                                               | float<br>RWES                       |
|                 | Control Loop (1 to 2)  Dead Band  Set the offset to the proportional band.  With a negative value, both heating and cooling outputs are active when the process value is near the set point.  A positive value keeps heating and cooling outputs from fighting each other. | -1,000.0 to 1,000.0°F or units<br>-556 to 556°C       | 0.0                              | Instance 1 Map 1 Map 2 1898 2378 Instance 2 Map 1 Map 2 1968 2448                     | 0x97<br>(151)<br>1 to 2<br>0xA (10)                | 71                     | 8008                                               | float<br>RWES                       |
| EEUn<br>[t.tUn] | Control Loop (1 to 2) TRU-TUNE+™ Enable Enable or disable the TRU-TUNE+™ adaptive tuning feature.                                                                                                                                                                          | <u>no</u> No (59)<br><u><b>YES</b></u> Yes (106)      | No                               | Instance 1 Map 1 Map 2 1910 2390 Instance 2 Map 1 Map 2 1980 2460                     | 0x97 (151)<br>1 to 2<br>0x10 (16)                  |                        | 8022                                               | uint<br>RWES                        |
| with othe       | lues will be rounded off to fit in<br>er interfaces.<br>e with PM4, PM8 and PM9 n                                                                                                                                                                                          | can be read                                           |                                  |                                                                                       |                                                    |                        | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |                                     |

| Dis-<br>play             | Parameter Name<br>Description                                                                                                                                                                                     | Range                                                                | Default  | Modbus Rela-<br>tive<br>Address                                                                                                               | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| <b>E.bnd</b> [t.bnd]     | Control Loop (1 to 2) TRU-TUNE+™ Band Set the range, centered on the set point, within which TRU-TUNE+™ will be in effect. Use this function only if the con- troller is unable to adap- tive tune automatically. | 0 to 100                                                             | 0        | Instance 1   Map 1   Map 2   1912   2392   Instance 2   Map 1   Map 2   1982   2462                                                           | 0x97 (151)<br>1 to 2<br>0x11 (17)                  |                        | 8034              | uint<br>RWES                                       |
| <b>Ł.9</b> n<br>[t.gn]   | Control Loop (1 to 2) TRU-TUNE+ <sup>TM</sup> Gain Select the responsiveness of the TRU-TUNE+ <sup>TM</sup> adaptive tuning calculations. More responsiveness may increase overshoot.                             | 1 to 6                                                               | 3        | Instance 1         Map 1       Map 2         1914       2394         Instance 2       Map 1         Map 1       Map 2         1984       2464 | 0x97 (151)<br>1 to 2<br>0x12 (18)                  |                        | 8035              | uint<br>RWES                                       |
| <b>R.E.S.P</b> [A.tSP]   | Control Loop (1 to 2)  Autotune Set Point  Set the set point that the autotune will use, as a percentage of the current set point.                                                                                | 50.0 to 200.0%                                                       | 90.0     | Instance 1   Map 1   Map 2   1918   2398   Instance 2   Map 1   Map   2   1988   2468                                                         | 0x97<br>(151)<br>1 to 2<br>0x14 (20)               |                        | 8025              | float<br>RWES                                      |
| <b>E.RS</b> -<br>[t.Agr] | Control Loop (1 to 2) Autotune Aggressive- ness Select the aggressiveness of the autotuning calculations.                                                                                                         | Undr damped (99) [r.ik] Critical damped (21) [Dufr] Over damped (69) | Critical | Instance 1   Map 1   Map 2   1916   2396   Instance 2   Map 1   Map 2   1986   2466                                                           | 0x97 (151)<br>1 to 2<br>0x13 (19)                  |                        | 8024              | uint<br>RWES                                       |
| <b>P.dL</b><br>[ P.dL]   | Control Loop (1 to 2) Peltier Delay Set a value that will cause a delay when switching from heat mode to cool mode.                                                                                               | 0.0 to 5.0 seconds                                                   | 0.0      | Instance 1   Map 1   Map 2   1934   2414   Instance 2   Map 1   Map 2   2004   2484                                                           | 0x97 (151)<br>1 to 2<br>0x1C (28)                  |                        | 8051              | float<br>RWES                                      |
| [ r.En]                  | Control Loop (1 to 2)  Remote Enable  Enable this loop to switch control to the remote set point.                                                                                                                 | No (59) <b>YES</b> Yes (106)                                         | No       | Instance 1 Map 1 Map 2 2200 2680 Instance 2 Map 1 Map 2 2280 2760                                                                             | 0x6B<br>(107)<br>1 to 2<br>0x15 (21)               | 48                     | 7021              | uint<br>RWES                                       |
| <b>r.Ł Y</b><br>[ r.ty]  | Control Loop (1 to 2)  Remote Set Point Type  Set what type of set point will be used.                                                                                                                            | RUE a Auto (10)                                                      | Auto     | Instance 1 Map 1 Map 2 2202 2682 Instance 2 Map 1 Map 2 2282 2762                                                                             | 0x6B (107)<br>1 to 2<br>0x16 (22)                  |                        | 7022              | uint<br>RWES                                       |
| with othe                | ote:  Some values will be rounded off to fit in the four-character display. Full values can be read with other interfaces.  Available with PM4, PM8 and PM9 models only                                           |                                                                      |          |                                                                                                                                               |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play   | Parameter Name<br>Description                                                                                                                                                 | Range                                                                                                                                                                                                                                                                                             | Default                     | Modbus Relative Address                                                                                                         | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| UFR [UFA]      | Control Loop (1 to 2) User Failure Action Select what the controller outputs will do when the user switches control to manual mode.                                           | off Off, sets output power to 0% (62) bpl 5 Bumpless Transfer, maintains same output power, if it was less than 75% and stable, otherwise 0% (14) rna Fixed Power, sets output power to Manual Power setting (33) user User, sets output power to last open-loop set point the user entered (100) | User                        | Instance 1   Map 1   Map 2   2182   2662   Instance 2   Map 1   Map 2   2262   2742                                             | 0x6B (107)<br>1 to 2<br>0xC (12)                   |                        | 7012         | uint<br>RWES                                       |
| FR.L<br>[FAiL] | Control Loop (1 to 2) Input Error Failure Select what the controller outputs will do when an input error switches control to manual mode.                                     | off Off, sets output power to 0% (62) bpl 5 Bumpless Transfer, maintains same output power, if it was less than 75% and stable, otherwise 0% (14) rna Fixed Power, sets output power to Fixed Power setting (33) user User, sets output power to last open-loop set point the user entered (100)  | User                        | Instance 1 Map 1 Map 2 2184 2664 Instance 2 Map 1 Map 2 2264 2744                                                               | 0x6B (107)<br>1 to 2<br>0xD (13)                   |                        | 7013         | uint<br>RWES                                       |
| [MAn]          | Control Loop (1 to 2) Fixed Power  Set the manual output power level that will take effect if an input error failure occurs while User Failure Action is set to Manual Fixed. | Set Point Open Loop Limit<br>Low to Set Point Open Loop<br>Limit High (Setup Page)                                                                                                                                                                                                                | 0.0                         | Instance 1   Map 1   Map 2   2180   2660   Instance 2   Map 1   Map 2   2260   2740                                             | 0x6B (107)<br>1 to 2<br>0xB (11)                   |                        | 7011         | float<br>RWES                                      |
| [ L.dE]        | Control Loop (1 to 2) Open Loop Detect Enable Turn on the open-loop detect feature to monitor a closed-loop operation for the appropriate response.                           | no No (59) <b>YE5</b> Yes (106)                                                                                                                                                                                                                                                                   | No                          | Instance 1   Map 1   Map 2   1922   2402   Instance 2   Map 1   Map 2   1992   2472                                             | 0x97 (151)<br>1 to 2<br>0x16 (22)                  | 74                     | 8039         | uint<br>RWES                                       |
| [ L.dt]        | Control Loop (1 to 2) Open Loop Detect Time The Open Loop Detect Deviation value must occur for this time period to trigger an open-loop error.                               | 0 to 3,600 seconds                                                                                                                                                                                                                                                                                | 240                         | Instance 1 Map 1 Map 2 1924 2404 Instance 2 Map 1 Map 2 1994 2474                                                               | 0x97 (151)<br>1 to 2<br>0x17 (23)                  | 75                     | 8040         | uint<br>RWES                                       |
| [ L.dd]        | Control Loop (1 to 2) Open Loop Detect Deviation The value entered represents the Process Value deviation that must occur to trigger an openloop error.                       | -1,999.000 to 9,999.000°F or<br>units<br>-1,110.555 to 5,555.000°C                                                                                                                                                                                                                                | 10.0°F or<br>units<br>6.0°C | Instance 1         Map 1       Map 2         1926       2406         Instance 2       Map 1       Map 2         1996       2476 | 0x97 (151)<br>1 to 2<br>0x18 (24)                  | 76                     | 8041         | float<br>RWES                                      |
| with othe      | lues will be rounded off to fit in er interfaces.<br>le with PM4, PM8 and PM9 n                                                                                               | the four-character display. Full values                                                                                                                                                                                                                                                           | can be read                 |                                                                                                                                 |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play                | Parameter Name<br>Description                                                                                                       | Range                                                                                                                | Default                          | Modbus Rela-<br>tive<br>Address                                                     | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index                             | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------|-------------------------------------|
| [ rP]                       | Control Loop (1 to 2) Ramp Action Select when the controller's set point will ramp to the defined end set point.                    | □ <b>oFF</b> Off (62) □ <b>5 !</b> Startup (88) □ <b>5 !</b> P Set Point Change (85) □ <b>b</b> □ <b>!</b> Both (13) | Off                              | Instance 1   Map 1   Map 2   2186   2666   Instance 2   Map 1   Map 2   2266   2746 | 0x6B (107)<br>1 to 2<br>0xE (14)                   | 56                                                 | 7014              | uint<br>RWES                        |
| [ r.SC]                     | Control Loop (1 to 2) Ramp Scale Select the scale of the ramp rate.                                                                 | Hours (39) [77 in Minutes (57)                                                                                       | Minutes                          | Instance 1   Map 1   Map 2   2188   2668   Instance 2   Map 1   Map 2   2268   2748 | 0x6B (107)<br>1 to 2<br>0xF (15)                   | 57                                                 | 7015              | uint<br>RWES                        |
| [ r.rt]                     | Control Loop (1 to 2) Ramp Rate Set the rate for the set point ramp. Set the time units for the rate with the Ramp Scale parameter. | 0.0 to 9,999.000°F or units<br>0.0 to 5,555.000°C                                                                    | 1.0°F or<br>units<br>1.0°C       | Instance 1   Map 1   Map 2   2192   2672   Instance 2   Map 1   Map 2   2272   2752 | 0x6B (107)<br>1 to 2<br>0x11 (17)                  | 58                                                 | 7017              | float<br>RWES                       |
| [ L.SP]                     | Control Loop (1 to 2)  Low Set Point  Set the minimum value of the closed loop set point range.                                     | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C                                                   | -1,999°F<br>or units<br>-1,128°C | Instance 1 Map 1 Map 2 2164 2644 Instance 2 Map 1 Map 2 2244 2724                   | 0x6B (107)<br>1 to 2<br>3                          | 52                                                 | 7003              | float<br>RWES                       |
| <b>h.5</b> <i>P</i> [ h.SP] | Control Loop (1 to 2)  High Set Point  Set the maximum value of the closed loop set point range.                                    | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C                                                   | 9,999°F<br>or units,<br>5,537°C  | Instance 1   Map 1   Map 2   2166   2646   Instance 2   Map 1   Map 2   2246   2726 | 0x6B (107)<br>1 to 2<br>4                          | 53                                                 | 7004              | float<br>RWES                       |
| [ C.SP]                     | Control Loop (1 to 2) Closed Loop Set Point Set the set point that the controller will automatically control to.                    | Low Set Point to High Set<br>Point (Setup Page)                                                                      | 75.0°F or<br>units<br>24.0°C     | Instance 1   Map 1   Map 2   2160   2640   Instance 2   Map 1   Map 2   2240   2720 | 0x6B<br>(107)<br>1 to 2<br>1                       | 49                                                 | 7001              | float<br>RWES                       |
| id.S]                       | Control Loop (1 to 2)  Idle Set Point  Set a closed loop set point that can be triggered by an event state.                         | Low Set Point to High Set<br>Point (Setup Page)                                                                      | 75.0°F or<br>units<br>24.0°C     | Instance 1   Map 1   Map 2   2176   2656   Instance 2   Map 1   Map 2   2197   2736 | 0x6B<br>(107)<br>1 to 2<br>9                       | 50                                                 | 7009              | float<br>RWES                       |
| [SP.Lo]                     | Control Loop (1 to 2) Set Point Open Limit Low Set the minimum value of the open-loop set point range.                              | -100 to 100%                                                                                                         | -100                             | Instance 1 Map 1 Map 2 2168 2649 Instance 2 Map 1 Map 2 2248 2728                   | 0x6B (107)<br>1 to 2<br>5                          | 54                                                 | 7005              | float<br>RWES                       |
| with othe                   | lues will be rounded off to fit in er interfaces. e with PM4, PM8 and PM9 n                                                         |                                                                                                                      |                                  |                                                                                     |                                                    | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |                   |                                     |

| Dis-<br>play              | Parameter Name<br>Description                                                                                                                                                  | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default                                                        | Modbus Rela-<br>tive<br>Address                                                                    | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [SP.hi]                   | Control Loop (1 to 4) Set Point Open Limit High Set the maximum value of the open-loop set point range.                                                                        | -100 to 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                            | Instance 1<br>  Map 1   Map 2<br>  2170   2650<br>  Instance 2<br>  Map 1   Map 2<br>  2250   2730 | 0x6B (107)<br>1 to 2<br>6                          | 55                     | 7006              | float<br>RWES                                      |
| [ o.SP]                   | Control Loop (1 to 2) Open Loop Set Point Set a fixed level of output power when in manual (open-loop) mode.                                                                   | -100 to 100% (heat and cool)<br>0 to 100% (heat only)<br>-100 to 0% (cool only)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                            | Instance 1<br>  Map 1   Map 2<br>  2162   2642<br>  Instance 2<br>  Map 1   Map 2<br>  2242   2722 | 0x6B<br>(107)<br>1 to 2<br>2                       | 51                     | 7002              | float<br>RWES                                      |
| [ C.M]                    | Control Loop (1 to 2) Control Mode Select the method that this loop will use to control.                                                                                       | ©FF Off (62) RUE © Auto (10) POR © Manual (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Auto                                                           | Instance 1 Map 1 Map 2 1880 2360 Instance 2 Map 1 Map 2 1950 2430                                  | 0x97<br>(151)<br>1 to 2<br>1                       | 63                     | 8001              | uint<br>RWES                                       |
| o E P E<br>SE E<br>Output | Menu                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                    |                                                    |                        |                   |                                                    |
| Fo Fn                     | Output Digital (1 to 4) Output Function Select what function will drive this output.  Note: Output 4 is always a limit when limit is present. Use as primary limit connection. | □FF Off (62)  □FF Off (62)  □FF Heat (36)  □□□ Cool (20)  □□□ Special Function Output 1 (1532)  □□□ Special Function Output 2 (1533)  □□□ Profile Event Out A (233)  □□□ Special Function Output 2 (1533)  □□□ Special Function Output 2 (1533)  □□□ Special Function Output 2 (1533)  □□□ Special Function Out A (233)  □□□ Special Function Out B (234)  □□ Special Function Out B (234) | Output 1 - Heat Output 2 - Alarm Output 3 - Off Output 4 - Off | Instance 1 Map 1 Map 2 888 1008  Offset to next instance (Map 1 & Map 2) equals +30                | 0x6A (106)<br>1 to 4<br>5                          | 83                     | 6005              | uint<br>RWES                                       |
| [ Fi]                     | Output Digital (1 to 4) Output Function Instance Set the instance of the function selected above.                                                                              | 1 to 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                              | Instance 1 Map 1 Map 2 890 1010  Offset to next instance (Map 1 & Map 2) equals +30                | 0x6A (106)<br>1 to 4<br>6                          | 84                     | 6006              | uint<br>RWES                                       |
| with othe                 | Note: Some values will be rounded off to fit in the four-character display. Full values can be read with other interfaces.  Available with PM4, PM8 and PM9 models only        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                    |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play | Parameter Name<br>Description                                                                                                                                               | Range                                                                                                                                                     | Default                                            | Modbus Rela-<br>tive<br>Address                                                     | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [ o.Ct]      | Output Digital (1 to 4) Output Control Set the output control type. This parameter is only used with PID control, but can be set anytime.                                   | Ftb Fixed Time Base (34) Utb Variable Time Base (103)                                                                                                     | Fixed<br>Time<br>Base                              | Instance 1 Map 1 Map 2 882 1002 Offset to next instance (Map 1 & Map 2) equals +30  | 0x6A (106)<br>1 to 4<br>2                          | 85                     | 6002              | uint<br>RWES                                       |
| o.tb]        | Output Digital (1 to 4) Output Time Base Set the time base for fixed-time-base control.                                                                                     | 0.1 to 60.0 seconds (solid-state<br>relay or switched dc)<br>5.0 to 60.0 seconds (mechani-<br>cal relay or NO-ARC power<br>control)                       | 1.0 sec.<br>for SSR<br>or swdc<br>5.0 for<br>relay | Instance 1 Map 1 Map 2 884 1004  Offset to next instance (Map 1 & Map 2) equals +30 | 0x6A (106)<br>1 to 4<br>3                          | 86                     | 6003              | float<br>RWES                                      |
| [ o.Lo]      | Output Digital (1 to 4) Output Low Power Scale The power output will never be less than the value specified and will represent the value at which output scaling begins.    | 0.0 to 100.0%                                                                                                                                             | 0.0%                                               | Instance 1 Map 1 Map 2 896 1016  Offset to next instance (Map 1 & Map 2) equals +30 | 0x6A (106)<br>1 to 4<br>9                          | 87                     | 6009              | float<br>RWES                                      |
| [ o.hi]      | Output Digital (1 to 4) Output High Power Scale The power output will never be greater than the value specified and will represent the value at which output scaling stops. | 0.0 to 100.0%                                                                                                                                             | 100.0%                                             | Instance 1 Map 1 Map 2 898 1018  Offset to next instance (Map 1 & Map 2) equals +30 | 0x6A (106)<br>1 to 4<br>0xA (10)                   | 88                     | 6010              | float<br>RWES                                      |
| [ o.ty]      | Output Process (1 or 3) Output Type Select whether the process output will operate in volts or milliamps.                                                                   | บอโ Volts (104)<br>โก๊กิ Milliamps (112)                                                                                                                  | Volts                                              | Instance 1   Map 1   Map 2   720   840   Instance 3   Map 1   Map 2   800   920     | 0x76 (118)<br>1 or 3<br>1                          | 95                     | 18001             | uint<br>RWES                                       |
| [ Fn]        | Output Process (1 or 3) Output Function Set the type of function that will drive this output.                                                                               | ☐FF Off (62) ☐ERE Heat (36) ☐☐☐ Cool (20) ☐☐☐ Duplex (212) ☐☐☐ Alarm (6) ☐☐☐ Profile Event Out A (233) ☐☐☐ Profile Event Out B (234) ☐☐☐ Retransmit (213) | Off                                                | Instance 1 Map 1 Map 2 722 842 Instance 3 Map 1 Map 2 802 922                       | 0x76 (118)<br>1 or 3<br>2                          | 96                     | 18002             | uint<br>RWES                                       |
| with othe    | lues will be rounded off to fit in<br>er interfaces.<br>e with PM4, PM8 and PM9 r                                                                                           | the four-character display. Full values                                                                                                                   | can be read                                        |                                                                                     |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play            | Parameter Name<br>Description                                                                                                                                                                                | Range                                                              | Default                            | Modbus Rela-<br>tive<br>Address                                                                                       | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| <b>r.5</b> r            | Output Process (1 or 3) Retransmit Source Select the value that will be retransmitted.                                                                                                                       | Analog Input (142)  5EPE Set Point (85)  [Urr] Current (22)        | Analog<br>Input                    | Instance 1   Map 1   Map 2   724   844   Instance 3   Map 1   Map 2   804   924                                       | 0x76 (118)<br>1 or 3<br>3                          | 97                     | 18003             | uint<br>RWES                                       |
| <b>F</b> , [Fi]         | Output Process (1 or 3) Output Function Instance Set the instance of the function selected above.                                                                                                            | 1 to 4                                                             | 1                                  | Instance 1 Map 1 Map 2 726 846 Instance 3 Map 1 Map 2 806 926                                                         | 0x76 (118)<br>1 or 3<br>4                          | 98                     | 18004             | uint<br>RWES                                       |
| <b>5.L o</b><br>[ S.Lo] | Output Process (1 or 3) Scale Low Set the minimum value of the output range.                                                                                                                                 | -100.0 to 100.0                                                    | 0.00                               | Instance 1 Map 1 Map 2 736 856 Instance 3 Map 1 Map 2 816 936                                                         | 0x76 (118)<br>1 or 3<br>9                          | 99                     | 18009             | float<br>RWES                                      |
| <b>5.</b> h. [S.hi]     | Output Process (1 or 3) Scale High Set the maximum value of the output range.                                                                                                                                | -100.0 to 100.0                                                    | 10.00                              | Instance 1       Map 1     Map 2       738     858       Instance 3     Map 1       Map 1     Map 2       818     938 | 0x76 (118)<br>1 or 3<br>0xA (10)                   | 100                    | 18010             | float<br>RWES                                      |
| r.Lo]                   | Output Process (1 or 3) Range Low Set the minimum value of the retransmit value range in process units. When the retransmit source is at this value, the retransmit output will be at its Scale Low value.   | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C | 0.0°F or<br>units<br>-18°C         | Instance 1 Map 1 Map 2 740 860 Instance 3 Map 1 Map 2 820 940                                                         | 0x76 (118)<br>1 or 3<br>0xB (11)                   | 101                    | 18011             | float<br>RWES                                      |
| [ r.hi]                 | Output Process (1 or 3) Range High Set the maximum value of the retransmit value range in process units. When the retransmit source is at this value, the retransmit output will be at its Scale High value. | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C | 9,999.0°F<br>or units<br>5,537.0°C | Instance 1   Map 1   Map 2   742   862   Instance 2   Map 1   Map 2   822   942                                       | 0x76 (118)<br>1 or 3<br>0xC (12)                   | 102                    | 18012             | float<br>RWES                                      |
| <b>a.La</b><br>[ o.Lo]  | Output Process (1 or 3) Output Low Power Scale The power output will never be less than the value specified and will represent the value at which power scaling begins.                                      | 0.0 to 100%                                                        | 0.0%                               | Instance 1 Map 1 Map 2 744 864 Instance 2 Map 1 Map 2 824 944                                                         | 0x76 (118)<br>1 or 3<br>0x0D (13)                  | 103                    | 18013             | float<br>RWES                                      |
| with othe               | Note:  Some values will be rounded off to fit in the four-character display. Full values can be read with other interfaces.  * Available with PM4, PM8 and PM9 models only                                   |                                                                    |                                    |                                                                                                                       |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play            | Parameter Name<br>Description                                                                                                                                                 | Range                                                                                                 | Default                    | Modbus Rela-<br>tive<br>Address                                                      | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [ o.hi]                 | Output Process (1 or 3) Output High Power Scale The power output will never be greater than the value specified and will represent the value at which power scaling stops.    | 0.0 to 100%                                                                                           | 100%                       | Instance 1   Map 1   Map 2   746   866   Instance 2   Map 1   Map 2   826   946      | 0x0E (14)                                          | 104                    | 18014             | float<br>RWES                                      |
| <b>o.C ?</b><br>[ o.CA] | Output Process (1 or 3) Calibration Offset Set an offset value for a process output.                                                                                          | -1,999.000 to 9,999.000°F or<br>units<br>-1,110.555 to 5,555.000°C                                    | 0.0°F or<br>units<br>0.0°C | Instance 1   Map 1   Map 2   732   852   Instance 2   Map 1   Map 2   812   932      | 0x76 (118)<br>1 or 3<br>7                          | 105                    | 18007             | float<br>RWES                                      |
| SEL<br>Alarm N          | <b>Tenu</b>                                                                                                                                                                   |                                                                                                       |                            |                                                                                      |                                                    |                        |                   |                                                    |
| <b>REY</b> [A.ty]       | Alarm (1 to 4) Alarm Type Select whether the alarm trigger is a fixed value or will track the set point.                                                                      | OFF Off (62) Pr.RL Process Alarm (76) Deviation Alarm (24)                                            | Off                        | Instance 1 Map 1 Map 2 1508 1908  Offset to next instance (Map 1 & Map 2) equals +60 | 0x6D (109)<br>1 to 4<br>0xF (15)                   | 20                     | 9015              | uint<br>RWES                                       |
| 5 <i>r</i> ,8<br>[Sr.A] | Alarm (1 to 4) Alarm Source Select what will trigger this alarm.  Note: When using Deviation Alarms with Differential control, the Alarm Source must be set to Process Value. | R. Analog Input (142) PLUP Power (73) Pu Process Value (241) Ln Linearization (238) LUPP Current (22) |                            | Instance 1 Map 1 Map 2 1512 1912 Offset to next instance (Map 1 & Map 2) equals +60  | 0x6D (109)<br>1 to 4<br>0x11 (17)                  | 21                     | 9017              | uint<br>RWES                                       |
| [ iS.A]                 | Alarm (1 to 2) Alarm Source Instance Set the instance of the function selected above.  Note: Not available on single loop models.                                             | 1 or 2                                                                                                | 1                          | Instance 1 Map 1 Map 2 1514 1914 Instance 2 Map 1 Map 2 1564 1974                    | 0x6D (109)<br>1 to 2<br>0x12 (18)                  | 22                     | 9018              | uint<br>RWES                                       |
| Loop<br>[Loop]          | Alarm (1 to 2) Control Loop Set the instance of the Set Point Closed, Control Loop, that will be referenced by the deviation alarm.  Note: Not available on single            | 1 to 2                                                                                                | 1                          | Instance 1 Map 1 Map 2 1524 1924 Instance 2 Map 1 Map 2 1574 1984                    | 0x6D (109)<br>1 to 2<br>0x17 (23)                  | 23                     | 9023              | uint<br>RWES                                       |
| with othe               | loop models.                                                                                                                                                                  |                                                                                                       |                            |                                                                                      |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play    | Parameter Name<br>Description                                                                                                                                                                                                                                                                                                                                                                     | Range                                                                                       | Default                        | Modbus Rela-<br>tive<br>Address                                                                                          | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index                             | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------|-------------------------------------|
| [ A.hy]         | Alarm (1 to 4)  Alarm Hysteresis  Set the hysteresis for an alarm. This determines how far into the safe region the process value needs to move before the alarm can be cleared.                                                                                                                                                                                                                  | 0.001 to 9,999.000°F or units<br>0.001 to 5,555.000°C                                       | 1.0°F or<br>units<br>1.0°C     | Instance 1 Map 1 Map 2 1484 1884  Offset to next instance (Map 1 equals +50, for Map 2 equals +60)                       | 0x6D (109)<br>1 to 4<br>3                          | 24                                                 | 9003         | float<br>RWES                       |
| [A.Lg]          | Alarm (1 to 4) Alarm Logic Select what the output condition will be during the alarm state.                                                                                                                                                                                                                                                                                                       | RL.C Close On Alarm (17) RL.O Open On Alarm (66)                                            | Close On<br>Alarm              | Instance 1 Map 1 Map 2 1488 1888  Offset to next instance (Map 1 equals +50, for Map 2 equals +60)                       | 0x6D (109)<br>1 to 4<br>5                          | 25                                                 | 9005         | uint<br>RWES                        |
| [A.Sd]          | Alarm (1 to 4) Alarm Sides Select which side or sides will trigger this alarm.                                                                                                                                                                                                                                                                                                                    | <u><b>Both</b></u> Both (13)<br><u><b>h.gh</b></u> High (37)<br><u><b>Louy</b></u> Low (53) | Both                           | Instance 1 Map 1 Map 2 1486 1886  Offset to next instance (Map 1 equals +50, for Map 2 equals +60)                       | 0x6D (109)<br>1 to 4<br>4                          | 26                                                 | 9004         | uint<br>RWES                        |
| A.Lo            | Alarm (1 to 4) Alarm Low Set Point If Alarm Type (Setup Page, Alarm Menu) is set to: process - set the process value that will trigger a low alarm. deviation - set the span of units from the closed loop set point that will trigger a low alarm. A negative set point rep- resents a value below closed loop set point. A positive set point rep- resents a value above closed loop set point. | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C                          | 32.0°F<br>or units<br>0.0°C    | Instance 1 Map 1 Map 2 1482 1882  Offset to next instance (Map I) equals +50  Offset to next instance (Map 2) equals +60 | 0x6D<br>(109)<br>1 to 4<br>2                       | 18                                                 | 9002         | float<br>RWES                       |
| R.h.i<br>[A.hi] | Alarm (1 to 4) Alarm High Set Point If Alarm Type (Setup Page, Alarm Menu) is set to: process - set the process value that will trigger a high alarm. deviation - set the span of units from the closed loop set point that will trigger a high alarm.                                                                                                                                            | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C                          | 300.0°F<br>or units<br>150.0°C | Instance 1 Map 1 Map 2 1480 1880  Offset to next instance (Map 1) equals +50  Offset to next instance (Map 2) equals +60 | 0x6D<br>(109)<br>1 to 4<br>1                       | 19                                                 | 9001         | float<br>RWES                       |
| with othe       | lues will be rounded off to fit in<br>er interfaces.<br>le with PM4, PM8 and PM9 n                                                                                                                                                                                                                                                                                                                |                                                                                             |                                |                                                                                                                          |                                                    | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |              |                                     |

| Dis-<br>play        | Parameter Name<br>Description                                                                                                                                                                      | Range                                                       | Default          | Modbus Relative Address                                                                            | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID                                  | Data<br>Type<br>&<br>Read/<br>Write |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|-------------------------------------|
| [A.LA]              | Alarm (1 to 4) Alarm Latching Turn alarm latching on or off. A latched alarm has to be turned off by the user.                                                                                     | nl RE Non-Latching (60) LRE Latching (49)                   | Non-<br>Latching | Instance 1 Map 1 Map 2 1492 1892  Offset to next instance (Map 1 equals +50, for Map 2 equals +60) | 0x6D (109)<br>1 to 4<br>7                          | 27                     | 9007                                               | uint<br>RWES                        |
| [A.bL]              | Alarm (1 to 4)  Alarm Blocking  Select when an alarm will be blocked. After startup and/or after the set point changes, the alarm will be blocked until the process value enters the normal range. | off (62) 54r Startup (88) 54P Set Point (85) 604h Both (13) | Off              | Instance 1 Map 1 Map 2 1494 1894  Offset to next instance (Map 1 equals +50, for Map 2 equals +60) | 0x6D (109)<br>1 to 4<br>8                          | 28                     | 9008                                               | uint<br>RWES                        |
| [A.Si]              | Alarm (1 to 4) Alarm Silencing Turn alarm silencing on to allow the user to disable this alarm.                                                                                                    | off (62) on On (63)                                         | Off              | Instance 1 Map 1 Map 2 1490 1890  Offset to next instance (Map 1 equals +50, for Map 2 equals +60) | 0x6D (109)<br>1 to 4<br>6                          | 29                     | 9006                                               | uint<br>RWES                        |
| [A.dSP]             | Alarm (1 to 4) Alarm Display Display an alarm message when an alarm is active.                                                                                                                     | off (62) on On (63)                                         | On               | Instance 1 Map 1 Map 2 1510 1910  Offset to next instance (Map 1 equals +50, for Map 2 equals +60) | 0x6D (109)<br>1 to 4<br>0x10 (16)                  | 30                     | 9016                                               | uint<br>RWES                        |
| [ A.dL]             | Alarm (1 to 4) Alarm Delay Time Set the span of time that the alarm will be delayed after the process value exceeds the alarm set point.                                                           | 0 to 9,999 seconds                                          | 0                | Instance 1 Map 1 Map 2 1520 1920  Offset to next instance (Map 1 equals +50, for Map 2 equals +60) | 0x6D (109)<br>1 to 4<br>0x15 (21)                  | 31                     | 9021                                               | uint<br>RWES                        |
| R.C.L.r.<br>[A.Clr] | Alarm (1 to 4) Alarm Clear Request Write to this register to clear an alarm  Note:  If an alarm is setup to latch when active  R[[r] will appear on the display.                                   | Clear (0) No Change (255)                                   |                  | Instance 1 Map 1 Map 2 1504 1904  Offset to next instance (Map1 1 equals +50, Map 2 equals +60)    | 0x6D<br>(109)<br>1 to 4<br>0xD (13)                |                        | 9013                                               | uint<br>W                           |
| with othe           | lues will be rounded off to fit in er interfaces.  It with PM4, PM8 and PM9 n                                                                                                                      | can be read                                                 |                  |                                                                                                    |                                                    |                        | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |                                     |

| Dis-<br>play           | Parameter Name<br>Description                                                                                                                                              | Range                                                                       | Default     | Modbus Rela-<br>tive<br>Address                                                                 | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [A.Sir]                | Alarm (1 to 4) Alarm Silence Request Write to this register to silence an alarm  Note: If an alarm is setup to silence alarm when active R.5 r will appear on the display. | <b>5</b> .L Silence (1010)                                                  | 0           | Instance 1 Map 1 Map 2 1506 1906  Offset to next instance (Map1 1 equals +50, Map 2 equals +60) | 0x6D<br>(109)<br>1 to 4<br>0xE (14)                |                        | 9014              | uint<br>W                                          |
| [A.St]                 | Alarm (1 to 4) Alarm State Current state of alarm                                                                                                                          | Startup (88) None (61) Blocked (12) Alarm low (8) Alarm high (7) Error (28) |             | Instance 1 Map 1 Map 2 1496 1896  Offset to next instance (Map1 1 equals +50, Map 2 equals +60) | 0x6D<br>(109)<br>1 to 4<br>9                       |                        | 9009              | uint<br>R                                          |
| CUrr<br>5EL<br>Current | Menu                                                                                                                                                                       |                                                                             |             |                                                                                                 |                                                    |                        |                   |                                                    |
| [ C.Sd]                | Current (1) Current Sides Select which side or sides will be monitored.                                                                                                    | _off Off (62)<br>h .9h High (37)<br>Lold Low (53)<br>both Both (13)         | off         | Instance 1 Map 1 Map 2 1128 1368                                                                | 0x73 (115)<br>1<br>5                               | 145                    | 15005             | uint<br>RWES                                       |
| [ C.Ur]                | Current (1) Current Read Enable Display under/over-range current.                                                                                                          | No (59)<br>Yes (106)                                                        | no          | Instance 1 Map 1 Map 2 1126 1366                                                                | 0x73 (115)<br>1<br>4                               | 146                    | 15004             | uint<br>RWES                                       |
| [ C.dt]                | Current (1) Input Current Detection Threshold For factory adjustment only.                                                                                                 | 3 to 59                                                                     | 9           | Instance 1 Map 1 Map 2 1142 1382                                                                | 0x73 (115)<br>1<br>0xC (12)                        | 147                    | 15012             | uint<br>RWES                                       |
| [ C.SC]                | Current (1) Current Scaling Adjust scaling to match the transformer's high range.                                                                                          | 0 to 9,999.000                                                              | 50.0        | Instance 1 Map 1 Map 2 1162 1402                                                                | 0x73 (115)<br>1<br>0x16 (22)                       | 148                    | 15022             | float<br>RWES                                      |
| [C.oFS]                | Current (1)  Heater Current Offset  Calibrate the current reading with an offset value.                                                                                    | -9,999.000 to 9,999.000                                                     | 0.0         | Instance 1 Map 1 Map 2 1140 1380                                                                | 0x73 (115)<br>1<br>0xB (11)                        | 149                    | 15011             | float<br>RWES                                      |
| with othe              | lues will be rounded off to fit in a rinterfaces. e with PM4, PM8 and PM9 n                                                                                                | the four-character display. Full values                                     | can be read |                                                                                                 |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play            | Parameter Name<br>Description                                                                                              | Range                                                    | Default     | Modbus Rela-<br>tive<br>Address   | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|-----------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| [ C.Si]                 | Current (1) Current Output Source Instance Select which output instance the current transformer will monitor.              | 1 to 12                                                  | 1           | Instance 1 Map 1 Map 2 1156 1396  | 0x73 (115)<br>1<br>0x13 (19)                       | 150                    | 15019        | uint<br>RWES                                       |
| CORE* SEE Math Me       | enu                                                                                                                        |                                                          |             | ,                                 |                                                    |                        | •            |                                                    |
| [ Fn]                   | Math (1) Function Set the operator that will be applied to the sources.                                                    | ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐                    | Off         | Instance 1 Map 1 Map 2 3040       | 0x7D (125)<br>1<br>0x15 (21)                       | 128                    | 25021        | uint<br>RWES                                       |
| [SFn.E]                 | Math (1) Source Function E Set the type of function that will be used for this source.                                     | None (61) FUn Function Key (1001) d o Digital I/O (1142) | None        | Instance 1 Map 1 Map 2 3008       | 0x7D (125)<br>1<br>5                               |                        | 25005        | uint<br>RWES                                       |
| [ Si.E]                 | Math (1) Source Instance E Set the instance of the function selected above.                                                | 1 to 12                                                  | 1           | Instance 1 Map 1 Map 2 3018       | 0x7D (125)<br>1<br>0xA (10)                        |                        | 25010        | float<br>RWES                                      |
| <b>5.L</b> o            | Math (1) Scale Low This value will correspond to Output Range Low.                                                         | -1,999.000 to 9,999.000                                  | 0.0         | Instance 1 Map 1 Map 2 3046       | 0x7D (125)<br>1<br>0x18 (24)                       | 129                    | 25024        | float<br>RWES                                      |
| <b>5.h</b> .<br>[ S.hi] | Math (1) Scale High This value will correspond to Output Range High.                                                       | -1,999.000 to 9,999.000                                  | 1.0         | Instance 1 Map 1 Map 2 3048       | 0x7D (125)<br>1<br>0x19 (25)                       | 130                    | 25025        | float<br>RWES                                      |
| [ r.Lo]                 | Math (1) Range Low This value will correspond to Input Scale Low.                                                          | -1,999.000 to 9,999.000                                  | 0.0         | Instance 1 Map 1 Map 2 3050       | 0x7D (125)<br>1<br>0x1A (26)                       | 131                    | 25026        | float<br>RWES                                      |
| [ r.hi]                 | Math (1) Range High This value will correspond to Input Scale High.                                                        | -1,999.000 to 9,999.000                                  | 1.0         | Instance 1 Map 1 Map 2 3052       | 0x7D (125)<br>1<br>0x1B (27)                       | 132                    | 25027        | float<br>RWES                                      |
| F.L<br>[FiL]            | Math (1) Filter Filtering smooths out the output signal of this function block. Increase the time to increase fil- tering. | 0.0 to 60.0 seconds                                      | 0.0         | Instance 1<br>Map 1 Map 2<br>3054 | 0x7D (125)<br>1<br>0x1C (28)                       |                        | 25028        | float<br>RWES                                      |
| with othe               | lues will be rounded off to fit in ter<br>er interfaces.<br>le with PM4, PM8 and PM9 n                                     | the four-character display. Full values                  | can be read |                                   |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play                                                                                                                                                              | Parameter Name<br>Description                                                                    | Range                                                              | Default | Modbus Rela-<br>tive<br>Address | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------|---------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| 5oF*<br>5EL<br>Special                                                                                                                                                    | Output Function Menu                                                                             |                                                                    |         |                                 |                                                    |                        |              |                                                    |
| <b>F</b> n [ Fn]                                                                                                                                                          | Special Output (1) Function Set the function to match the device it will operate.                | (1506)  OFF Off (62)  OFF Motorized Valve  (1508)  Confrod  (1506) | Off     | Instance 1 Map 1 Map 2 3856     | 0x87 (135)<br>1<br>9                               | 181                    | 35009        | uint<br>RWES                                       |
| [ <b>5<i>F n,R</i></b> ]<br>[SFn.A]                                                                                                                                       | Special Output (1) Source Function A Set the type of function that will be used for this source. | None (61)   PLJr   Power (73)                                      | None    | Instance 1 Map 1 Map 2 3840     | 0x87 (135)<br>1<br>1                               | 182                    | 35001        | uint<br>RWES                                       |
| <b>5</b> . <b>A</b><br>[ Si.A]                                                                                                                                            | Special Output (1) Source Instance A Set the instance of the function selected above.            | 1 to 2                                                             | 1       | Instance 1 Map 1 Map 2 3844     | 0x87 (135)<br>1<br>3                               | 183                    | 35003        | uint<br>RWES                                       |
| [ <b>5F n.b</b> ]<br>[SFn.b]                                                                                                                                              | Special Output (1) Source Function B Set the type of function that will be used for this source. | None (61)   PLJr   Power (73)                                      | None    | Instance 1 Map 1 Map 2 3842     | 0x87 (135)<br>1<br>2                               | 184                    | 35002        | uint<br>RWES                                       |
| [ Si.b]                                                                                                                                                                   | Special Output (1) Source Instance B Set the instance of the function selected above.            | 1 to 2                                                             | 1       | Instance 1 Map 1 Map 2 3846     | 0x87 (135)<br>1<br>4                               | 185                    | 35004        | uint<br>RWES                                       |
| [ <b>Pon.A</b> ]                                                                                                                                                          | Special Output (1) Power On Level 1 Compressor 1 power on level.                                 | -100.00 to 100.00%                                                 | 0       | Instance 1 Map 1 Map 2 3874     | 0x87 (135)<br>1<br>0x12 (18)                       | 186                    | 35018        | float<br>RWES                                      |
| [ <b>PoF.R</b> ]<br>[PoF.A]                                                                                                                                               | Special Output (1) Power Off Level 1 Compressor 1 power off level.                               | -100.00 to 100.00%                                                 | 5       | Instance 1 Map 1 Map 2 3876     | 0x87 (135)<br>1<br>0x13 (19)                       | 187                    | 35019        | float<br>RWES                                      |
|                                                                                                                                                                           | Special Output (1) Power On Level 2 Compressor 2 power on level.                                 | -100.00 to 100.00%                                                 | 0       | Instance 1 Map 1 Map 2 3878     | 0x87 (135)<br>1<br>0x14 (20)                       | 188                    | 1            | float<br>RWES                                      |
| <b>PoF.b</b><br>[PoF.b]                                                                                                                                                   | Special Output (1) Power Off Level 2 Compressor 1 power off level.                               | -100.00 to 100.00%                                                 | 5       | Instance 1 Map 1 Map 2 3880     | 0x87 (135)<br>1<br>0x15 (21)                       | 189                    | 35021        | float<br>RWES                                      |
| on.t                                                                                                                                                                      | Special Output (1) On Time At a minimum stay on specified amount of time.                        | 0 to 9,999 seconds                                                 | 20      | Instance 1 Map 1 Map 2 3882     | 0x87 (135)<br>1<br>0x16 (22)                       | 190                    | 35022        | uint<br>RWES                                       |
| <b>oF.</b> Ł<br>[ oF.t]                                                                                                                                                   | Special Output (1) Off Time At a minimum stay off specified amount of time.                      | 0 to 9,999 seconds                                                 | 20      | Instance 1 Map 1 Map 2 3884     | 0x87 (135)<br>1<br>0x17 (23)                       | 191                    | 35023        | uint<br>RWES                                       |
| Note: Some values will be rounded off to fit in the four-character display. Full values can be read with other interfaces.  * Available with PM4, PM8 and PM9 models only |                                                                                                  |                                                                    |         |                                 |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play          | Parameter Name<br>Description                                                                                                                         | Range                                                     | Default | Modbus Rela-<br>tive<br>Address                                                                                                 | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID                                  | Data<br>Type<br>&<br>Read/<br>Write |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|-------------------------------------|
| <b>E.E</b> [ t.t]     | Special Output (1) Valve Travel Time The amount of time it takes the valve to fully open and then fully close.                                        | 10 to 9,999 seconds                                       | 120     | Instance 1 Map 1 Map 2 3886                                                                                                     | 0x87 (135)<br>1<br>0x18 (24)                       | 192                    | 35024                                              | uint<br>RWES                        |
| <b>db</b><br>[ db]    | Special Output (1)  Dead Band  Output power needs to change by specified level prior to turning on.                                                   | 1.0 to 100.0%                                             | 2       | Instance 1 Map 1 Map 2 3888                                                                                                     | 0x87 (135)<br>1<br>0x19 (25)                       | 193                    | 35025                                              | float<br>RWES                       |
| [ t.dL]               | Special Output (1) Time Delay If requested power is 0.0% for longer than the specified Time Delay, the compressor will shut off.                      | 0 to 9,999 seconds                                        | 0       | Instance 1<br>Map 1 Map 2<br>3890                                                                                               | 0x87 (135)<br>1<br>0x1A (26)                       |                        | 35026                                              | uint<br>RWES                        |
| FUn<br>5EE<br>Functio | n Key                                                                                                                                                 |                                                           |         |                                                                                                                                 |                                                    |                        |                                                    |                                     |
| LEv]                  | Function Key (1 to 2) Active Level The Function Key will always power up in the low state. Pressing the Function Key will toggle the selected action. | <u>ኩ . <b>9</b></u> High (37)<br>[ <b>Lo U J</b> Low (53) | High    | Instance 1         Map 1       Map 2         1360       1600         Instance 2       Map 1       Map 2         1380       1620 | 0x6E (110)<br>3 to 4<br>1                          | 137                    | 10001                                              | uint<br>RWES                        |
| with othe             | lues will be rounded off to fit in error interfaces.                                                                                                  | can be read                                               |         |                                                                                                                                 |                                                    |                        | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |                                     |

| Dis-<br>play    | Parameter Name<br>Description                                                                                                                                                                                                           | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default     | Modbus Relative Address                                           | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data Type & Read/ Write                            |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| Fn Fn           | Function Key (1 to 2) Action Function Program the EZ Key to trigger an action. Functions respond to a level state change or an edge level change.  Note: The Limit Reset function is not available in firmware revision 11.0 and above. | nane None (61)  r.f.n Remote Set Point enable (216)  L.T. Limit Reset, edge triggered (82)  J. Sr. User Set Restore, edge triggered (227)  PLol Keypad Lockout, level triggered (217)  RLT Alarm Reset, edge triggered (108)  Sol Silence Alarms, edge triggered (108)  Rof Control Loops Off and Alarms to Non-alarm State, level triggered (220)  F.L Force Alarm to occur, level triggered (218)  J. L. J. Lide Set Point, level triggered (107)  E. L. L. Tune, edge triggered (98)  T. Tan Manual, level triggered (54)  off Switch Control Loop Off, level triggered (90)  L.J. Profile Disable, level triggered (206)  P.J. Profile Hold/Resume, level triggered (207)  P. of Start Profile, edge triggered (196)  P. 5. Profile Start/Stop, level triggered (208)  [.5. F. Start Step (1077) | None        | Instance 1 Map 1 Map 2 1364 1604 Instance 2 Map 1 Map 2 1384 1624 | 0x6E (110)<br>3 to 4<br>3                          | 138                    | 10003             | uint<br>RWES                                       |
| [ Fi]           | Function Key (1 to 2) Function Instance Select which instance the EZ Key will affect. If only one instance is avail- able, any selection will affect it.                                                                                | 1 to 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0           | Instance 1 Map 1 Map 2 1364 1606 Instance 2 Map 1 Map 2 1384 1626 | 0x96 (110)<br>3 to 4<br>4                          | 139                    | 10004             |                                                    |
| SEE<br>Global I | Menu                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                   |                                                    |                        |                   |                                                    |
| [ C_F]          | Global Display Units Select which scale to use for temperature.                                                                                                                                                                         | F °F (30) C (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °F          |                                                                   | 0x69 (105)<br>1<br>5                               | 110                    | 3005              | uint<br>RWES                                       |
| ACLF            | Global AC Line Frequency Set the frequency to the applied ac line power source.                                                                                                                                                         | 50 50 Hz (3)<br>60 Hz (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 Hz       | Instance 1 Map 1 Map 2 886 1006                                   | 0x6A (106)<br>1<br>4                               | 89                     | 1034              | uint<br>RWES                                       |
| with othe       | lues will be rounded off to fit in<br>er interfaces.<br>le with PM4, PM8 and PM9 n                                                                                                                                                      | the four-character display. Full values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | can be read |                                                                   |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play          | Parameter Name<br>Description                                                                                                                                                                    | Range                                                                     | Default                     | Modbus Rela-<br>tive<br>Address  | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|----------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| [R.tyP]               | Global<br>Ramping Type                                                                                                                                                                           | <b>FREE</b> Rate (81) <b>E</b> Time (143)                                 | Time                        | Instance 1 Map 1 Map 2 4414      | 0x7A (122)<br>1<br>26 (38)                         |                        | 22038        | uint<br>RWE                                        |
| [P.tyP]               | Global Profile Type Set the profile startup to be based on a set point or a process value.                                                                                                       | [ <b>5E</b> <i>P</i> <b>E</b> ] Set Point (85)<br><b>Pro</b> Process (75) | Set Point                   | Instance 1 Map 1 Map 2 2534 4354 | 0x7A (122)<br>1<br>8                               |                        | 22008        | uint<br>RWE                                        |
| <b>95E</b><br>[gSE]   | Global Guaranteed Soak Enable Enables the guaranteed soak deviation function in profiles.                                                                                                        | <b>OFF</b> Off (62)<br><b>On</b> (63)                                     | Off                         | Instance 1 Map 1 Map 2 2530 4350 | 0x7A (122)<br>1<br>6                               |                        | 22006        | uint<br>RWE                                        |
| [gSd1]                | Global Guaranteed Soak Deviation 1 Set the value of the deviation band that will be used in all profile step types. The process value must enter the deviation band before the step can proceed. | 0.0 to 9,999.000°F or units<br>0.0 to 5,555.000°C                         | 10.0°F or<br>units<br>6.0°C | Instance 1 Map 1 Map 2 2532 4352 | 0x7A (122)<br>1<br>7                               |                        | 22007        | float<br>RWE                                       |
| <b>95d2</b><br>[gSd2] | Global Guaranteed Soak Deviation 2 Set the value of the deviation band that will be used in all profile step types. The process value must enter the deviation band before the step can proceed. | 0.0 to 9,999.000°F or units<br>0.0 to 5,555.000°C                         | 10.0°F or<br>units<br>6.0°C | Instance 1 Map 1 Map 2 4420      | 0x7A (122)<br>1<br>0x29 (41)                       |                        | 22041        | float<br>RWE                                       |
| <b>5</b> .8 [ Si.a]   | Global Source Instance A Set the digital source for Wait for Event 1 in profile.                                                                                                                 | 5 to 12                                                                   | 5                           | Instance 1 Map 1 Map 2 4390      | 0x7A (122)<br>1<br>0x1A (26)                       |                        | 22060        | uint<br>RWES                                       |
| [ Si.b]               | Global Source Instance B Set the digital source for Wait for Event 2 in profile.                                                                                                                 | 5 to 12                                                                   | 5                           | Instance 1 Map 1 Map 2 4392      | 7A (122)<br>1<br>0x1B (27)                         |                        | 22061        | uint<br>RWES                                       |
| Pot. [Poti]           | Global Power Off Time If profile is running and power is lost, profile will resume where it left off provided time set has not expired prior to power restoration.                               | 0 to 9999 seconds                                                         | 0                           | Instance 1 Map 1 Map 2 4484      | 7A (122)<br>1<br>0x49 (73)                         |                        | 22073        | uint<br>RWE                                        |
| with othe             | Note: Some values will be rounded off to fit in the four-character display. Full values can be read with other interfaces.  Available with PM4, PM8 and PM9 models only                          |                                                                           |                             |                                  |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

## Note:

When changing IP address the control power must be cycled for the new address to take effect.

| Dis-<br>play          | Parameter Name<br>Description                                                                                                                                                                            | Range                                                                                        | Default     | Modbus Rela-<br>tive<br>Address  | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|----------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| [C.LEd]               | Global Communications LED Action Turns comms LED on or off for selected comms ports.                                                                                                                     | [an] Comm port 1 (1189) [an] Comm port 2 (1190) [bokh] Comm port 1 and 2 (13) [aff] Off (62) | both        | Instance 1 Map 1 Map 2 1856 2326 | 0x6A (103)<br>1<br>0x0E (14)                       |                        | 3014         | uint<br>RWES                                       |
| <b>200E</b><br>[Zone] | Global Zone Turns Zone LED on or off based on selection.                                                                                                                                                 | Off (62) On (63)                                                                             | On          | Instance 1 Map 1 Map 2 2350      | 0x6A (103)<br>1<br>0x1A (26)                       |                        | 3026         | uint<br>RWES                                       |
| [Chan]                | Global Channel Turns Channel LED on or off based on selection.                                                                                                                                           | OFF Off (62) On (63)                                                                         | On          | Instance 1 Map 1 Map 2 2352      | 0x6A (103)<br>1<br>0x1B (27)                       |                        | 3027         | uint<br>RWES                                       |
| <b>dPr5</b><br>[dPrS] | Global Display Pairs Defines the number of Display Pairs.                                                                                                                                                | 1 to 10                                                                                      | 2           | Instance 1 Map 1 Map 2 2354      | 0x6A (103)<br>1<br>0x1C (28)                       |                        | 3028         | uint<br>RWES                                       |
| [ d.ti]               | Global Display Time Time delay in toggling between Display Pairs.                                                                                                                                        | 0 to 60                                                                                      | 0           | Instance 1 Map 1 Map 2 2356      | 0x6A (103)<br>1<br>0x1D (29)                       |                        | 3029         | uint<br>RWES                                       |
| <b>USr.S</b> ]        | Global User Settings Save Save all of this controller's settings to the selected set.                                                                                                                    | SEE   User Set 1 (101)                                                                       | None        | Instance 1 Map 1 Map 2 26 26     | 0x(101)<br>1<br>0xE (14)                           | 118                    | 1014         | uint<br>RWE                                        |
| USr.r.                | Global User Settings Restore Replace all of this controller's settings with another set.                                                                                                                 | FLEY Factory (31)  nonE None (61)  5EE I User Set 1 (101)  5EEC User Set 2 (102)             | None        | Instance 1 Map 1 Map 2 24 24     | 0x65<br>(101)<br>1<br>0xD (13)                     | 117                    | 1013         | uint<br>RWE                                        |
| SEE<br>Commu          | nications Menu                                                                                                                                                                                           |                                                                                              |             |                                  |                                                    |                        |              |                                                    |
| PCoL]                 | Communications 1 Protocol Set the protocol of this controller to the protocol that this network is using.                                                                                                | Standard Bus (1286)                                                                          | Modbus      | Instance 1 Map 1 Map 2 2492 2972 | 0x96 (150)<br>1<br>7                               |                        | 17009        | uint<br>RWE                                        |
| [ Ad.S]               | Communications 1 Standard Bus Address Set the network address of this controller. Each device on the network must have a unique ad- dress. The Zone Display on the front panel will display this number. | 1 to 16                                                                                      | 1           | Instance 1 Map 1 Map 2 2480 2960 | 0x96 (150)<br>1<br>1                               |                        | 17001        | uint<br>RWE                                        |
| with othe             | lues will be rounded off to fit in er interfaces. e with PM4, PM8 and PM9 n                                                                                                                              | the four-character display. Full values                                                      | can be read |                                  |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play          | Parameter Name<br>Description                                                                                                                                 | Range                                       | Default                                                             | Modbus Relative Address          | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|----------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [Ad.M]                | Communications (1 or 2)  Modbus Address  Set the network address of this controller. Each device on the network must have a unique address.                   | 1 to 247                                    | 1                                                                   | Instance 1 Map 1 Map 2 2482 2962 | 0x96 (150)<br>1<br>2                               |                        | 17007             | uint<br>RWE                                        |
| [bAUd]                | Communications (1 or 2)  Baud Rate  Set the speed of this controller's communications to match the speed of the Modbus serial network.                        | 9,600 (188)<br>19,200 (189)<br>38,400 (190) | 9,600                                                               | Instance 1 Map 1 Map 2 2484 2964 | 0x96 (150)<br>1<br>3                               |                        | 17002             | uint<br>RWE                                        |
| [PAr]                 | Communications  Parity (1 or 2)  Set the parity of this controller to match the parity of the Modbus serial network.                                          | none (61) EuEn Even (191) odd Odd (192)     | None                                                                | Instance 1 Map 1 Map 2 2486 2966 | 0x96 (150)<br>1<br>4                               |                        | 17003             | uint<br>RWE                                        |
| [ C_F]                | Communications (1) Display Units Select whether this communications channel will display in Celsius or Fahrenheit.  Note:                                     | Fahrenheit (30) Celsius (15)                | F                                                                   | Instance 1 Map 1 Map 2 2490 2970 | 0x96 (150)<br>1<br>6                               |                        | 17050             | uint<br>RWE                                        |
|                       | Applies to Modbus only.                                                                                                                                       |                                             |                                                                     |                                  |                                                    |                        |                   |                                                    |
| [M.hL]                | Communications (1 or 2) Modbus Word Order Select the word order of the two 16-bit words in the floating-point values.                                         | Loh, Low-High (1331) h,Lo High-Low (1330)   | Low-High                                                            | Instance 1 Map 1 Map 2 2488 2968 | 0x96 (150)<br>1<br>5                               |                        | 17043             | uint<br>RWE                                        |
| [ Map]                | Communications (1)  Data Map  If set to 1 the control will use PM legacy mapping.  If set to 2 the control will use new mapping to accommodate new functions. | 1 to 2                                      | 1 if 9 <sup>th</sup> digit of part number is a D or 1 otherwise, 2. |                                  |                                                    |                        | 17059             | uint<br>RWE                                        |
| [ nV.S]               | Communications (1) Non-Volatile Save If set to Yes all values written to the control will be saved in EE- PROM.                                               | <b>9E5</b> Yes (106) <b>no</b> No (59)      | Yes                                                                 | Instance 1 Map 1 Map 2 2494 2974 | 0x96 (150)<br>1<br>8                               | 198                    | 17051             | uint<br>RWE                                        |
| <b>Ad.d</b><br>[Ad.d] | Communications (2)  DeviceNet™ Node Address  Set the DeviceNet™ address for this gateway.                                                                     | 0 to 63                                     | 63                                                                  |                                  |                                                    |                        | 17052             |                                                    |
| with othe             | er interfaces.                                                                                                                                                | the four-character display. Full values     | can be read                                                         |                                  |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |
| * Availabl            | le with PM4, PM8 and PM9 n                                                                                                                                    | nodels only                                 |                                                                     |                                  |                                                    |                        |                   |                                                    |

| Dis-<br>play        | Parameter Name<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Range                                                             | Default     | Modbus Rela-<br>tive<br>Address | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|---------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| [bAUd]              | Communications (2)  Baud Rate DeviceNet <sup>TM</sup> Set the DeviceNet speed for this gateway's communications to match the speed of the serial network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [125] 125 kb (1351)<br>[250] 250 kb (1352)<br>[500] 500 kb (1353) | 125         |                                 |                                                    |                        | 17053        |                                                    |
| <b>FC.E</b> [ FC.E] | Communications (2) DeviceNet <sup>TM</sup> Quick Connect Enable Allows for immediate communication with the scanner upon power up.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>no</b> No (59) <b>9E5</b> Yes (106)                            | No          |                                 |                                                    |                        | 17054        |                                                    |
| [P.Add]             | Communications (2) Profibus Node Address Set the Profibus address for this control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 to 126                                                          | 126         |                                 |                                                    |                        | 17060        |                                                    |
| A.Loc               | Communications (2) Profibus Address Lock When set to yes will not allow address to be changed using software. Can be changed from front panel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   | No          |                                 |                                                    |                        | 17061        |                                                    |
| [iP.M]              | Communications (2) IP Address Mode Select DHCP to let a DHCP server assign an address to this module.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JHCP (1281)<br>FRJJ Fixed Address (1284)                          | DHCP        |                                 |                                                    |                        | 17012        |                                                    |
| [ip.F1]             | Communications (2) IP Fixed Address Part 1 Set the IP address of this module. Each device on the network must have a unique address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 255                                                          | 169         |                                 |                                                    |                        | 17014        |                                                    |
| [ip.F2]             | Communications (2) IP Fixed Address Part 2 Set the IP address of this module. Each device on the network must have a unique address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 255                                                          | 254         |                                 |                                                    |                        | 17015        |                                                    |
| [ip.F3]             | Communications (2) IP Fixed Address Part 3 Set the IP address of this module. Each device on the network must have a unique address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 255                                                          | 1           |                                 |                                                    |                        | 17016        |                                                    |
| [ip.F4]             | Communications (2) IP Fixed Address Part 4 Set the IP address of this module. Each device on the network must have a unique address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 255                                                          | 1           |                                 |                                                    |                        | 17017        |                                                    |
| with othe           | ulues will be rounded off to fit in the roun | the four-character display. Full values                           | can be read |                                 |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play             | Parameter Name<br>Description                                                                                                        | Range                                   | Default     | Modbus Rela-<br>tive<br>Address | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|---------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| (ip.F5)                  | Communications (2) IP Fixed Address Part 5 Set the IP address of this module. Each device on the network must have a unique address. | 0 to 255                                | 0           |                                 |                                                    |                        | 17018             |                                                    |
| <b>.P.F.6</b><br>[ip.F6] | Communications (2) IP Fixed Address Part 6 Set the IP address of this module. Each device on the network must have a unique address. | 0 to 255                                | 0           |                                 |                                                    |                        | 17019             |                                                    |
| [ip.S1]                  | Communications (2) IP Fixed Subnet Part 1 Set the IP subnet mask for this module.                                                    | 0 to 255                                | 255         |                                 |                                                    |                        | 17020             |                                                    |
| [ip.S2]                  | Communications (2) IP Fixed Subnet Part 2 Set the IP subnet mask for this module.                                                    | 0 to 255                                | 255         |                                 |                                                    |                        | 17021             |                                                    |
| [ip.S3]                  | Communications (2) IP Fixed Subnet Part 3 Set the IP subnet mask for this module.                                                    | 0 to 255                                | 0           |                                 |                                                    |                        | 17022             |                                                    |
| [ip.S4]                  | Communications (2) IP Fixed Subnet Part 4 Set the IP subnet mask for this module.                                                    | 0 to 255                                | 0           |                                 |                                                    |                        | 17023             |                                                    |
| [ip.S5]                  | Communications (2) IP Fixed Subnet Part 5 Set the IP subnet mask for this module                                                     | 0 to 255                                | 0           |                                 |                                                    |                        | 17024             |                                                    |
| [ip.S6]                  | Communications (2) IP Fixed Subnet Part 6 Set the IP subnet mask for this module.                                                    | 0 to 255                                | 0           |                                 |                                                    |                        | 17025             |                                                    |
| [ip.g1]                  | Communications (2) Fixed IP Gateway Part 1                                                                                           | 0 to 255                                | 0           |                                 |                                                    |                        | 17026             |                                                    |
| [ip.g2]                  | Communications (2) Fixed IP Gateway Part 2                                                                                           | 0 to 255                                | 0           |                                 |                                                    |                        | 17027             |                                                    |
| [ip.g3]                  | Communications (2) Fixed IP Gateway Part 3                                                                                           | 0 to 255                                | 0           |                                 |                                                    |                        | 17028             |                                                    |
| [ip.g4]                  | Communications (2) Fixed IP Gateway Part 4                                                                                           | 0 to 255                                | 0           |                                 |                                                    |                        | 17029             |                                                    |
| with oth                 | I<br>llues will be rounded off to fit in<br>er interfaces.<br>le with PM4, PM8 and PM9 n                                             | the four-character display. Full values | can be read |                                 |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play                | Parameter Name<br>Description                                                                                                                                 | Range                                                  | Default                                                             | Modbus Rela-<br>tive<br>Address  | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Parameter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|----------------------------------------------------|------------------------|--------------|----------------------------------------------------|
| [ip.g5]                     | Communications (2) Fixed IP Gateway Part 5                                                                                                                    | 0 to 255                                               | 0                                                                   |                                  |                                                    |                        | 17030        |                                                    |
| [ip.g6]                     | Communications (2) Fixed IP Gateway Part 6                                                                                                                    | 0 to 255                                               | 0                                                                   |                                  |                                                    |                        | 17031        |                                                    |
| <u>ГЛЬ.Е</u><br>[Mb.E]      | Communications (2) Modbus TCP Enable Activate Modbus TCP.                                                                                                     | <b>YE5</b> Yes (106)<br><b>no</b> No (59)              | Yes                                                                 |                                  |                                                    |                        | 17041        |                                                    |
| <i>E ,P.E</i><br>[EiP.E]    | Communications (2) EtherNet/IP™ Enable Activate Ethernet/IP™.                                                                                                 | <b>YE5</b> Yes (106)<br><b>no</b> No (59)              | Yes                                                                 |                                  |                                                    |                        | 17042        |                                                    |
| [Ao.nb]                     | Communications (2) CIP Implicit Assembly Output Member Quantity                                                                                               | 1 to 20                                                | 20                                                                  |                                  |                                                    |                        | 24009        |                                                    |
| [Ai.nb]                     | Communications (2) CIP Implicit Assembly Input Member Quantity                                                                                                | 1 to 20                                                | 20                                                                  |                                  |                                                    |                        | 24010        |                                                    |
| [ C_F]                      | Communications (2) Display Units Select which scale to use for temperature passed over communications port 2.                                                 | F°F (30) C (15)                                        | °F                                                                  | Instance 1 Map 1 Map 2 2510 2990 | 0x96 (150)<br>1<br>6                               | 199                    | 17050        | uint<br>RWE                                        |
| [ Map]                      | Communications (2)  Data Map  If set to 1 the control will use PM legacy mapping.  If set to 2 the control will use new mapping to accommodate new functions. | 1 to 2                                                 | 1 if 9 <sup>th</sup> digit of part number is a D or 1 otherwise, 2. |                                  |                                                    |                        | 17059        |                                                    |
| nU.S]                       | Communications (2) Non-volatile Save If set to Yes all values written to the control will be saved in EE- PROM.                                               | YES Yes (106) No (59)                                  | Yes                                                                 | Instance 2 Map 1 Map 2 2514 2994 | 96 (150)<br>2<br>8                                 | 198                    | 17051        | uint<br>RWE                                        |
| r E [ *<br>SE E<br>Real Tir | me Clock Menu                                                                                                                                                 |                                                        |                                                                     |                                  |                                                    |                        |              |                                                    |
| hour<br>[hoUr]              | Real Time Clock Hours Set the current time.                                                                                                                   | 0 to 23                                                | 0                                                                   | Instance 1 Map 1 Map 2 4004      | 88 (136)<br>1<br>3                                 |                        | 36003        | uint<br>RW                                         |
| [Min]                       | Real Time Clock Minutes Set the current time.                                                                                                                 | 0 to 59                                                | 0                                                                   | Instance 1 Map 1 Map 2 4006      | 88 (136)<br>1<br>4                                 |                        | 36004        | uint<br>RW                                         |
| with othe                   | I<br>ulues will be rounded off to fit in<br>er interfaces.<br>le with PM4, PM8 and PM9 n                                                                      | the four-character display. Full values<br>nodels only | can be read                                                         |                                  |                                                    |                        |              | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play  | Parameter Name<br>Description                                                       | Range                                                                                                                                                             | Default     | Modbus Rela-<br>tive<br>Address | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data Type & Read/ Write                            |
|---------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| dobd<br>[doW] | Real Time Clock  Day of Week  Set the current day of the week.                      | Sun   Sunday (1565)   Flan   Monday (1559)   EuE   Tuesday (1560)   UUE   Wednesday (1561)   EhUr   Thursday (1562)   Fr.   Friday (1563)   SRE   Saturday (1564) | Sun         | Instance 1 Map 1 Map 2 4002     | 88 (136)<br>1<br>2                                 |                        | 36002             | uint<br>RW                                         |
| with othe     | ulues will be rounded off to fit in<br>er interfaces.<br>le with PM4, PM8 and PM9 r | the four-character display. Full values                                                                                                                           | can be read |                                 |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

7

# **Chapter 7: Profiling Page**

# **Navigating the Profiling Page**

#### Note:

Some of these menus and parameters may not appear, depending on the controller's options. See model number information in the Appendix for more information. If there is only one instance of a menu, no submenus will appear.

### **How to Setup and Start a Profile**

First, consider some foundational profile *setup* features that once configured, will apply to all configured profiles.

The screen shot below (EZ-ZONE Configurator software) graphically shows the settings (shaded green)

that will apply to all profiles; e.g., if Guaranteed Soak is not enabled here this feature will not be available in any individual profile configuration.

Some of those features that apply to all profiles are listed below with a brief description of their function.

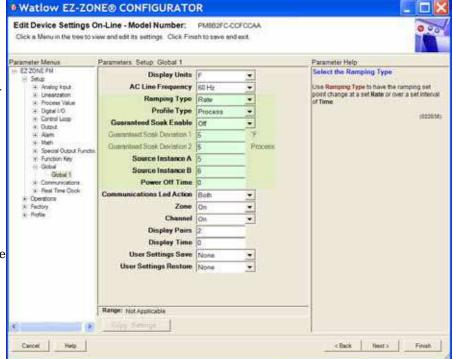
- Ramping Type (Time or Rate) which changes the profile set point based on a set interval of time or set rate.
- **Profile Type** (Set Point or Process) determines

whether a step (any step changing the set point) of a profile will begin by using the process value (Process) or the last closed-loop set point (Set Point).

- Guaranteed Soak Enable, when set to On makes this feature available in all profiles. If Guaranteed Soak Enable is on, use Guaranteed Soak Deviation 1 to 2 to set the value for the corresponding loop. Set the deviation or band above or below the working set point where this condition must be met before the profile can proceed.

#### Note:

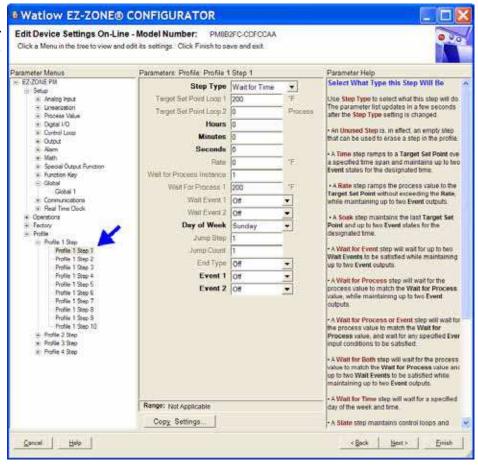
Changes made to profile parameters in the Profiling Pages will be saved and will also have an immediate impact on the running profile. Some parameters in the Profile Status Menu can be


changed for the currently running profile, but should only be changed by knowledgeable personnel and with caution. Changing parameters via the Profile Status Menu will not change the stored profile but will have an immediate impact on the profile that is running.

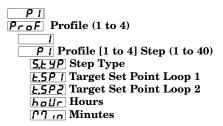
Once these global profile features are configured,

the next step will require navigation to the Profiling Page. Here, each desired ramp and soak profile will be configured.

To navigate to the Profile Page using the RUI, follow the steps below:


- 1. From the Home Page, press and hold the Advance Key for approximately five seconds. The profile prompt **ProF** will appear in the lower display and the profile
- number (e.g. **P**1) appears in the upper display.
- 2. Press the Up or Down key to change to another profile (1 to 4).
- 3. Press the Advance Key to move to the selected profiles first step.
- 4. Press the Up or Down keys to move through and select the step type.
- 5. Press the Advance Key to move through the selected step settings.
- 6. Press the Up or Down keys to change the steps settings.
- 7. Press the Infinity Key **②** at any time to return to the step number prompt.




- 8. Press the Infinity Key ② again to return to the profile number prompt.
- 9. From any point press and hold the Infinity Key of for two seconds to return to the Home Page.

If using EZ-ZONE Configurator software, simply click on the plus sign next to Profiles in the left hand column, as shown in the screen shot below.

Notice in the screen shot to the right some fields or parameters are not selectable (grayed out) based on the Step Type that is selected.



## **Profiling Parameters**



SEC Seconds

REE Rate

ULP, Wait For Process Instance

ULP | Wait For Process 1

ULE | Wait For Event 1

ULE | Wait for Event 2

dolu | Day of Week

US Jump Step

UC Jump Count

End End Type

Ent | Event 1

Ent | Event 2

| Dis-<br>play                        | Parameter Name<br>Description                                                                                                                                                               | Range                                                                                                                                                                                                         | Default                    | Modbus<br>Relative Ad-<br>dress                                                                 | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write             |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------------------------------------|
| Profilin                            | ng Menu                                                                                                                                                                                     |                                                                                                                                                                                                               |                            |                                                                                                 |                                                    |                   |                                                 |
| P                                   | Profile [1 to 4] Step Select a step to edit or view.                                                                                                                                        | 1 to 10 [profile 1]<br>11 to 20 [profile 2]<br>21 to 30 [profile 3]<br>31 to 40 [profile 4]                                                                                                                   |                            |                                                                                                 |                                                    |                   |                                                 |
| [ <b>5. 4 P</b> ]                   | Step Type Select a step type. Note: Prior to selecting the Step Type consider whether or not profiles will be based on time or rate of change. By default, profiles are configured for Time | USEP Unused Step (50) End End (27) JL Jump Loop (116) [LoC] Wait For Time (1543) Lubo Wait For Both (210) Lule Wait For Process (209) Lule Wait For Event (144) [Sories American Society (143) FREE Rate (81) | Unused                     | Instance 1 Map 1 Map 2 2570 4500  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>1                         | 21001             | uint<br>RWE                                     |
| [ <b>Ł.5<i>P I</i></b> ]<br>[t.SP1] | Step Type Parameters  Target Set Point Loop 1  When Step Type is Time or Rate, enter the closed loop set point for loop 1 to ramp to for this step.                                         | -1,999.000 to 9,999.000°F or<br>units<br>-1,128 to 5,537.000°C                                                                                                                                                | 0.0°F or<br>units<br>-18°C | Instance 1 Map 1 Map 2 2572 4502  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>2                         | 21002             | float<br>RWE                                    |
| [ <b>t.SP2</b> ]                    | Step Type Parameters Target Set Point Loop 2 When Step Type is Time or Rate, enter the closed loop set point for loop 2 to ramp to for this step.                                           | -1,999.000 to 9,999.000°F or<br>units<br>-1,128 to 5,537.000°C                                                                                                                                                | 0.0°F or<br>units<br>-18°C | Instance 1 Map 1 Map 2 4554 Offset to next instance Map 2 equals +100                           | 0x79 (121)<br>1 to 40<br>0x1C (28)                 | 21028             | float<br>RWE                                    |
| [hoUr]                              | Step Type Parameters Hours Select the hours (plus Minutes and Seconds) for a timed step.                                                                                                    | 0 to 99                                                                                                                                                                                                       | 0                          | Instance 1 Map 1 Map 2 2574 4504  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>3                         | 21003             | uint<br>RWE                                     |
| [ <b>/ ]</b> [Min]                  | Step Type Parameters Minutes When Step Type is Time, Soak, or Wait For Time enter Minutes (plus Hours and Seconds) for this step.                                                           | 0 to 59                                                                                                                                                                                                       | 0                          | Instance 1 Map 1 Map 2 2576 4506  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>4                         | 21004             | uint<br>RWE                                     |
| Note:<br>Some va<br>interface       | alues will be rounded off to fit in the four<br>es.                                                                                                                                         | r-character display. Full values can be re                                                                                                                                                                    | ad with other              |                                                                                                 |                                                    |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User Set |

| Dis-<br>play                  | Parameter Name<br>Description                                                                                                                                                                                                                                                                                                   | Range                                                                  | Default                      | Modbus<br>Relative Ad-<br>dress                                                                 | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write             |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------------------------------------|
| [ SEC]                        | Step Type Parameters Seconds When Step Type is Time, Soak, or Wait For Time enter Seconds (plus Hours and Minutes) for this step.                                                                                                                                                                                               | 0 to 59                                                                | 0                            | Instance 1 Map 1 Map 2 2578 4508  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>5                         | 21005             | uint<br>RWE                                     |
| rAtE                          | Rate When Step Type is Rate, enter the rate for ramping in degrees or units per minute.                                                                                                                                                                                                                                         | 0 to 9,999.000°F or units per<br>minute<br>0 to 5,555.000°C per minute | 0.0                          | Instance 1 Map 1 Map 2 2580 4510  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>6                         | 21006             | float<br>RWE                                    |
| [W.Pi]                        | Step Type Parameters Wait For Process Instance When Step Type is Wait for Process or Wait For Both, enter which analog input specified by Wait For Process 1 must be met before proceeding in profile.                                                                                                                          | 1 or 2                                                                 | 1                            | Instance 1 Map 1 Map 2 2598 4528  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>0x0F (15)                 | 21015             | uint<br>RWE                                     |
| [W.P1]                        | Step Type Parameters Wait For Process 1 When Step Type is Wait for Process or Wait For Both, enter wait for process value on analog input specified by Wait For Pro- cess Instance before proceeding in profile.                                                                                                                | -1,999.000 to 9,999.000°F or<br>units<br>-1,128.000 to 5,537.000°C     | 0.0°F or<br>units<br>-18.0°C | Instance 1 Map 1 Map 2 2590 4520  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>0x0B (11)                 | 21011             | float<br>RWE                                    |
| [WE.1]                        | Wait Event 1 When Step Type is Wait for Event or Wait For Both, select the event state that must be satisfied during this step.  Note: Wait Event 1 can be mapped to any available digital input (5 - 12). Navigate to the Setup Page under the Global Menu to find and modify Source Instance A 5.8 and Source Instance B 5.6. | off Off (62) on On (63) nonf None (61)                                 | Off                          | Instance 1 Map 1 Map 2 2586 4516  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 10<br>9                         | 21009             | uint<br>RWE                                     |
| Note:<br>Some va<br>interface | alues will be rounded off to fit in the four                                                                                                                                                                                                                                                                                    | -character display. Full values can be rea                             | nd with other                |                                                                                                 |                                                    |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User Set |

| Dis-<br>play                  | Parameter Name<br>Description                                                                                                                                                                                                                                                                                                                                 | Range                                                                                                                                                                                  | Default       | Modbus<br>Relative Ad-<br>dress                                                                 | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write             |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------------------------------------|
| [WE.2]                        | Step Type Parameters  Wait Event 2  When Step Type is Wait for Event or Wait For Both, select the event state that must be satisfied during this step.  Note:  Wait Event 2 can be mapped to any available digital input (5 - 12). Navigate to the Setup Page under the Global Menu to find and modify Source Instance A [s;ia] and Source Instance B [s;ib]. | off Off (62) on On (63) nonf None (61)                                                                                                                                                 | Off           | Instance 1 Map 1 Map 2 2588 4518  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>0xA (10)                  | 21010             | uint<br>RWE                                     |
| [dow]                         | Step Type Parameters  Day of Week  When Step Type is Wait for Time, the profile waits until this Day of Week along with Hours, Minutes and Seconds time of day is met.                                                                                                                                                                                        | Ed Every Day (1567) LJd Week days (1566) Sun Sunday (1565) [77an] Monday (1559) LUE Tuesday (1560) [JJEd] Wednesday (1561) [LHU] Thursday (1562) Fr. Friday (1563) SRE Saturday (1564) | Sunday        | Instance 1 Map 1 Map 2 4580  Offset to next instance Map 2 equals +100)                         | 0x79 (121)<br>1 to 40<br>0x29 (41)                 | 21041             | uint<br>RWE                                     |
| <b>J5</b>                     | Step Type Parameters Jump Step When Step Type is Jump Loop, this specifies which step to jump back to. Jump Step must be a lower step number than the cur- rent step number.                                                                                                                                                                                  | 1 to 40                                                                                                                                                                                | 0             | Instance 1 Map 1 Map 2 2592 4522  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>0xC (12)                  | 21012             | uint<br>RWE                                     |
| <b>J</b> []                   | Step Type Parameters Jump Count When Step Type is Jump Loop, this specifies the number of jumps to repeat. A value of 0 creates an infinite loop. Loops can be nested four deep.                                                                                                                                                                              | 0 to 9,999                                                                                                                                                                             | 0             | Instance 1 Map 1 Map 2 2594 4524  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>0xD (13)                  | 21013             | uint<br>RWE                                     |
| [ End]                        | Step Type Parameters End Type When Step Type is End, this specifies what the controller will do when this profile ends.                                                                                                                                                                                                                                       | (62)  Hold Hold last closed-loop set point in the profile (47)  USEr User, reverts to previous set point (100)                                                                         | Off           | Instance 1 Map 1 Map 2 2596 4526  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>0xE (14)                  | 21014             | uint<br>RWE                                     |
| Note:<br>Some va<br>interface | alues will be rounded off to fit in the four<br>es.                                                                                                                                                                                                                                                                                                           | -character display. Full values can be rea                                                                                                                                             | nd with other |                                                                                                 |                                                    |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User Set |

| Dis-<br>play                  | Parameter Name<br>Description                                                                                                       | Range                                      | Default       | Modbus<br>Relative Ad-<br>dress                                                                 | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write             |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-------------------------------------------------|
|                               | Step Type Parameters  Event 1  When Step Type is not Unused Step, select whether Event Output 1 or 2 is on or off during this step. | off Off (62) on On (63)                    | Off           | Instance 1 Map 1 Map 2 2582 4512  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>7                         |                   | uint<br>RWE                                     |
|                               | Step Type Parameters  Event 2  When Step Type is not Unused Step, select whether Event Output 1 or 2 is on or off during this step. | of F Off (62) on On (63)                   | Off           | Instance 1 Map 1 Map 2 2584 4514  Offset to next instance (Map 1 equals +50, Map 2 equals +100) | 0x79 (121)<br>1 to 40<br>8                         |                   | uint<br>RWE                                     |
| Note:<br>Some va<br>interface |                                                                                                                                     | -character display. Full values can be rea | ad with other |                                                                                                 |                                                    |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User Set |

| Display               | Step Type<br>Description                                                                                                                                                                                                                                                                                                                                                                              | Parameters in Step Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USEP<br>[UStP]        | Step Types Unused Step This is an empty step that can be used to plan for future steps to be inserted or temporarily deactivate a step in a profile. Change step type back when the step should be active again.                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [ ti]                 | Step Types Time If Ramping Type found in the Global Menu of the Setup Page is set for Time, control loop 1 to 2 may be part of the profile and all enabled control loops follow independent set points over the specified time. The state of up to 2 event outputs may be set or maintained.                                                                                                          | E 9.5 I Target Set Point Loop 1  E 9.5 I Target Set Point Loop 2  holl Hours  The Hours  SEC Seconds  95E I Guaranteed Soak Enable 1  95E2 Guaranteed Soak Enable 2  Ent I Event 1  Ent E Event 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| rAtE                  | Step Types Rate If Ramping Type found in the Global Menu of the Setup Page is set for Rate, control loop 1 must be part of the profile and if control loop 2 is enabled it must follow the same set point and rate in degrees or units per minute. Ensure all control loops have the same units of measure. The state of up to 2 event outputs may be set or maintained.                              | E 95 ! Target Set Point Loop 1 E 952 Target Set Point Loop 2 [35E ] Guaranteed Soak Enable 1 [35E2] Guaranteed Soak Enable 2 [FRE] Rate [FRE] Event 1 [FRE] Event 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>508H</b><br>[SoAk] | Step Types Soak A Soak Step maintains the last Target Set Points for the designated time. The state of up to 2 event outputs may be set or maintained.                                                                                                                                                                                                                                                | Hour   Hours   Property   Hours   Property   Hours   Followed Seconds   Followed Second |
| [CLoC]                | Step Types Wait For Time A Wait for Time Step is available with the real-time calendar clock feature. This allows the program to wait for a specified day and time before proceeding to the next step. Used to have the profile execute steps everyday or only weekdays. The state of up to 2 event outputs may be set or maintained.                                                                 | hall Hours Prom Minutes SEC Seconds dald Day of Week Ent   Event 1 Ent 2 Event 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [ W.E]                | Step Types Wait For Event A Wait for Event Step will wait for the two Wait for Event states (1 to 2) to match the specified state. The state of up to 2 event outputs may be set or maintained.                                                                                                                                                                                                       | LUE. I Wait Event 1 LUE. Wait Event 2 Ent I Event 1 Ent 2 Event 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [W.Pr]                | Step Types Wait For Process A Wait for Process Step will wait for Process Value 1 or 2 to match the Wait for Process Value. The state of up to 2 event outputs may be set or maintained.                                                                                                                                                                                                              | Lulp I Wait for Process 1 Lulp I Wait for Process 2 Ent I Event 1 Ent 2 Event 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [W.bo]                | Step Types Wait For Both A Wait For Process and Event Step will wait for Process Value 1 or 2 to match the Wait for Process 1 value, and/or the two Wait Event states to match the specified state. The state of up to 2 event outputs may be set or maintained.                                                                                                                                      | ULP! Wait for Process 1 ULP! Wait for Process 2 ULE! Wait Event 1 ULE! Wait Event 2 ELE Event 1 ELE Event 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Subr<br>[Subr]        | Step Types Subroutine A Subroutine Step jumps to a set of subroutine steps that are common to many profiles. This allows efficiency by utilizing several steps to be accessed and called upon. Once the subroutine is complete, control is passed back to the main profile at the next step. The state of up to 8 event outputs may be set or maintained. This step type not available in subroutine. | 55 Subroutine Step 56 Subroutine Count  Ent 1 Event 1  Ent 2 Event 2  Ent 3 Event 3  Ent 4 Event 4  Ent 5 Event 5  Ent 6  Ent 1 Event 7  Ent 8 Event 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Display   | Step Type<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameters in Step Type                                  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| JL [ JL]  | Step Types Jump Loop A Jump Loop step will repeat previous steps a number of times designated in Jump Count. Jump Loops can be nested up to four deep. The state of up to 2 event outputs may be set or maintained. This step type not available in subroutine.                                                                                                                                                                                                                                         | J5 Jump Step J[ Jump Count  Ent   Event 1  Ent 2 Event 2 |
|           | Note: Use the Subroutine step type to jump forward to a set of common steps.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
| End [End] | Step Types End An End Step will end the profile and set the control modes and set points to match the End Type. The state of up to 2 event outputs may be set or maintained. The event outputs will not be set off unless specifically stated in this step. If a profile does not have an End Step, the profile continues until step 40, then stops and maintains the last set points and control modes. In Subroutines, the End Step returns control back to the next profile step following the call. | End End Type  Ent I Event 1  Ent 2 Event 2               |

8

# **Chapter 8: Factory Page**

# **Navigating the Factory Page**

To go to the Factory Page from the Home Page, press and hold both the Advance and Infinity keys for six seconds.

- Press the Up or Down key to view available menus. On the following pages top level menus are identified with a yellow background color.
- Press the Advance Key 
   o to enter the menu of choice
- If a submenu exists (more than one instance),

- press the Up  $\odot$  or Down  $\odot$  key to select and then press the Advance Key  $\odot$  to enter.
- Press the Up or Down key to move through available menu prompts.
- Press the Infinity Key © to move backwards through the levels: parameter to submenu; submenu to menu; menu to Home Page.
- Press and hold the Infinity Key © for two seconds to return to the Home Page.

#### Note:

Some of these menus and parameters may not appear, depending on the controller's options. See model number information in the Appendix for more information. If there is only one instance of a menu, no submenus will appear.

#### Note:

Some of the listed parameters may not be visible. Parameter visibility is dependent upon controller part number.

| CUSE                                                   |
|--------------------------------------------------------|
| F[F] Custom Setup Menu                                 |
| [U5] Custom Setup (1 to 20)                            |
| Parameter                                              |
| nstance ID                                             |
| Lot                                                    |
| FLEY Security Setting Menu                             |
| Lo[ Security Setting                                   |
| LoLo Operations Page                                   |
| Lolp Profiling Page                                    |
| PRSE Password Enabled                                  |
| rLal Read Lock                                         |
| SLol Write Security                                    |
| Locked Access Level                                    |
| Rolling Password                                       |
| PRSB Administrator Password                            |
| PRS,R Administrator Password                           |
| ULoC                                                   |
| F[LY] Security Setting Menu                            |
| LodE Public Key                                        |
| PR55 Password                                          |
| d .89                                                  |
| F[LY] Diagnostics Menu                                 |
| d . 89 Diagnostics                                     |
| Pn Part Number                                         |
| Software Revision                                      |
| 5.bld Software Build Number                            |
| 50 Serial Number                                       |
| <b>GREE</b> Date of Manufacture                        |
| IP Actual Address Mode P.R.   IP Actual Address Part 1 |
| IP Actual Address Part 1                               |
| 1987 IP Actual Address Part 3                          |
| TICOTEL ACTUAL AUGUESS FAIL O                          |

## IP Actual Address Part 4
## PAS IP Actual Address Part 5
## PAS IP Actual Address Part 6

## FLY Calibration Menu

## Electrical Measurement
## Electrical Input Offset
## Electrical Input Slope
## Electrical Output Offset
## Electrical Output Slope
## Electrica

| Dis-<br>play           | Parameter Name<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Range                                                                                                                                                                     | Default              | Modbus<br>Relative Ad-<br>dress        | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data Type & Read/ Write                            |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| Custom                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                           | •                    |                                        |                                                    |                        |                   |                                                    |
| PRr [Par]              | Custom Parameter 1 to 20 Select the parameters that will appear in the Home Page.  The Parameter 1 value will appear in the upper display of the Home Page. It cannot be changed with the Up and Down Keys in the Home Page. The Parameter 2 value will appear in the lower display in the Home Page. It can be changed with the Up and Down Keys, if the parameter is a writable one.  Scroll through the other Home Page parameters with the Advance Key  Note:  Display Pairs affect the pairing of custom parameters on the Home page. For more information on Display Pairs see the section in this guide entitled "Modifying the Display Pairs". | None   L,hy Limit Hysteresis   L,hy Limit Hysteresis   L,hy Limit High Set Point   LL5 Limit Low Set Point   LL5 Limit Low Set Point   CUr Current Read   Pro Process   L | See:<br>Home<br>Page |                                        |                                                    |                        | 14005             | uint<br>RWES                                       |
| [ iid]                 | Custom (1 to 20) Instance ID Select which instance of the parameter will be selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 to 4                                                                                                                                                                    |                      |                                        | 1                                                  |                        | 14003             | uint<br>RWES                                       |
| LoC<br>FCEY<br>Lock Me | nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                           |                      |                                        |                                                    |                        |                   |                                                    |
| [LoC.o]                | Security Setting Operations Page Change the security level of the Operations Page.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 to 3                                                                                                                                                                    | 2                    | Instance 1<br>Map 1 Map 2<br>1832 2302 | 0x67 (103)<br>1<br>2                               |                        | 3002              | uint<br>RWE                                        |
| [LoC.P]                | Security Setting Profiling Page Change the security level of the Profiling Page.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 to 3                                                                                                                                                                    | 3                    | Instance 1 Map 1 Map 2 1844 2314       | 0x67 (103)<br>1<br>8                               |                        | 3008              | uint<br>RWE                                        |
| [LoC.P]                | Security Setting Password Enable Set to On to require a password for menu changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | off Off on On                                                                                                                                                             | Off                  |                                        |                                                    |                        | 3009              | uint<br>RWE                                        |
| with other             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                           |                      |                                        |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play | Parameter Name<br>Description                                                                                                                                                                                                                                        | Range                                     | Default    | Modbus<br>Relative Ad-<br>dress  | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------|----------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| [rLoC]       | Security Setting Read Lock Set the read security clearance level. The user can access the selected level and all lower levels. If the Set Lockout Secu- rity level is higher than the Read Lockout Secu- rity, the Read Lockout Security level takes priority.       | 1 to 5                                    | 5          | Instance 1 Map 1                 | 0x67 (103)<br>1<br>0x0A (10)                       |                        | 3010              | uint<br>RWE                                        |
| [SLoC]       | Security Setting Write Security Set the write security clearance level. The user can access the selected level and all lower levels. If the Set Lockout Secu- rity level is higher than the Read Lockout Secu- rity, the Read Lockout Security level takes priority. | 0 to 5                                    | 5          | Instance 1 Map 1 Map 2 1844 2314 | 0x67 (103)<br>1<br>0x0B (11)                       |                        | 3011              | uint<br>RWE                                        |
| LoC.L        | Security Setting Locked Access Level Determines user level menu visibility when Password Enable is set to on. See Features sec- tion under Password Security.                                                                                                        | 1 to 5                                    | 5          |                                  |                                                    |                        | 3016              | uint<br>RWE                                        |
| roll [roLL]  | Rolling Password When power is cycled a new Public Key will be displayed and User Password changes.                                                                                                                                                                  | OFF Off On                                | Off        |                                  |                                                    |                        | 3019              | uint<br>RWE                                        |
| [PAS.u]      | Security Setting User Password Used to acquire access to menus made available through the Locked Access Level setting.                                                                                                                                               | 10 to 999                                 | 63         |                                  |                                                    |                        | 3017              | uint<br>RWE                                        |
| [PAS.A]      | Security Setting Administrator Password Used to acquire full access to all menus including disabling or changing passwords.                                                                                                                                          | 10 to 999                                 | 156        |                                  |                                                    |                        | 3018              | uint<br>RWE                                        |
| with other   | r interfaces.                                                                                                                                                                                                                                                        | ne four-character display. Full values ca | an be read |                                  |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play             | Parameter Name<br>Description                                                                                                                                                                                                          | Range                                           | Default    | Modbus<br>Relative Ad-<br>dress  | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|----------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| ULoC<br>FCEY<br>Unlock N | Menu                                                                                                                                                                                                                                   |                                                 |            |                                  |                                                    |                        |                   |                                                    |
| [CodE]                   | Security Setting Public Key If Rolling Password turned on, generates a random number when power is cycled. If Roll- ing Password is off fixed number will be displayed. The key can be used to gain access when password is not known. | Customer Specific                               | 0          |                                  |                                                    |                        | 3020              | uint<br>R                                          |
| [PASS]                   | Password Enter the User or Administrator password to gain access. After valid password is supplied exit this menu and reenter the Security Menu via the Factory Page.                                                                  | -1999 to 9999                                   | 0          |                                  |                                                    |                        | 3022              | int<br>RW                                          |
| ### Diagnost             | tics Menu                                                                                                                                                                                                                              |                                                 |            |                                  |                                                    |                        |                   |                                                    |
| [ Pn]                    | Diagnostics Part Number Display this controller's part number.                                                                                                                                                                         | 15 characters                                   |            |                                  | 0x65<br>(101)<br>1<br>9                            | 115                    | 1009              | string<br>R                                        |
| [ rEu]                   | Diagnostics Software Revision Display this controller's firmware revision number.                                                                                                                                                      | 1 to 10                                         |            | Instance 1 Map 1 Map 2 4 4       | 0x65<br>(101)<br>1<br>3                            | 116                    | 1003              | string<br>R                                        |
| [S.bL d]                 | Diagnostics Software Build Number Display the firmware build number.                                                                                                                                                                   | 0 to 2,147,483,647                              |            | Instance 1<br>Map 1 Map 2<br>8 8 | 0x65<br>(101)<br>1<br>5                            |                        | 1005              | dint<br>R                                          |
| <b>5</b> n [ Sn]         | Diagnostics Serial Number Display the serial number.                                                                                                                                                                                   | 0 to 2,147,483,647                              |            | Instance 1 Map 1 Map 2 12 12     | 0x65<br>(101)<br>1<br>0x20 (32)                    |                        | 1032              | string<br>R                                        |
| date<br>[dAtE]           | Diagnostics Date of Manufacture Display the date code.                                                                                                                                                                                 | 0 to 2,147,483,647                              |            | Instance 1 Map 1 Map 2 14 14     | 0x65<br>(101)<br>1<br>8                            |                        | 1008              | dint<br>R                                          |
| No Display               | Diagnostics Hardware ID Display the Hardware ID.                                                                                                                                                                                       | 0 to 2,147,483,647                              |            | Instance 1 Map 1 Map 2 0 0       | 0x65<br>(101)<br>1<br>1                            |                        | 1001              | dint<br>R                                          |
| No Dis-<br>play          | Diagnostics Firmware ID Display the Firmware ID.                                                                                                                                                                                       | 0 to 2,147,483,647                              |            | Instance 1 Map 1 Map 2 2 2       | 0x65<br>(101)<br>1<br>2                            |                        | 1002              | dint<br>R                                          |
| [iP.AC]                  | Diagnostics IP Address Mode Actual address mode (DHCP or Fixed).                                                                                                                                                                       | [HAD] DHCP (1281)<br>[FRD] Fixed Address (1284) | DHCP       |                                  |                                                    |                        | 17013             |                                                    |
| with other               | r interfaces.                                                                                                                                                                                                                          | ne four-character display. Full values o        | an be read |                                  |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play                      | Parameter Name<br>Description                                                                                                                                                   | Range                                                                    | Default    | Modbus<br>Relative Ad-<br>dress                                                                | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID | Data<br>Type<br>&<br>Read/<br>Write                |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------|----------------------------------------------------|
| (P,R 1)<br>[ip.F1]                | Diagnostics IP Actual Address Part  Actual IP address of this module. Each device on the network must have a unique address.                                                    | 0 to 255                                                                 | 169        |                                                                                                |                                                    |                        | 17014             |                                                    |
| [ip.F2]                           | Diagnostics IP Actual Address Part 2 Actual IP address of this module. Each device on the network must have a unique address.                                                   | 0 to 255                                                                 | 254        |                                                                                                |                                                    |                        | 17015             |                                                    |
| [ip.F3]                           | Diagnostics IP Actual Address Part 3 Actual IP address of this module. Each device on the network must have a unique address.                                                   | 0 to 255                                                                 | 1          |                                                                                                |                                                    |                        | 17016             |                                                    |
| [ip.F4]                           | Diagnostics IP Actual Address Part 4 Actual IP address of this module. Each device on the network must have a unique address.                                                   | 0 to 255                                                                 | 1          |                                                                                                |                                                    |                        | 17017             |                                                    |
| <i>.P.</i> R. <b>5</b><br>[ip.F5] | Diagnostics IP Actual Address Part 5 Actual IP address of this module. Each device on the network must have a unique address.                                                   | 0 to 255                                                                 | 1          |                                                                                                |                                                    |                        | 17018             |                                                    |
| [ip.F6]                           | Diagnostics IP Actual Address Part 6 Actual IP address of this module. Each device on the network must have a unique address.                                                   | 0 to 255                                                                 | 1          |                                                                                                |                                                    |                        | 17019             |                                                    |
| ERL<br>FELY<br>Calibrat           | tion Menu                                                                                                                                                                       |                                                                          |            |                                                                                                |                                                    |                        |                   |                                                    |
| 「TTU<br>[ Mv]                     | Calibration (1 to 2) Electrical Measurement Read the raw electrical value for this input in the units corresponding to the Sensor Type (Setup Page, Analog Input Menu) setting. | -3.4e38 to 3.4e38                                                        |            | Instance 1   Map 1   Map 2   400   400   Instance 2   Map 1   Map 2   480   490                | 0x68<br>(104)<br>1 to 2<br>0x15 (21)               |                        | 4021              | float<br>R                                         |
| EL .o                             | Calibration (1 to 2) Electrical Input Offset Change this value to calibrate the low end of the input range.                                                                     | -1,999.000 to 9,999.000                                                  | 0.0        | Instance 1<br>  Map 1   Map 2<br>  378   378<br>  Instance 2<br>  Map 1   Map 2<br>  458   468 | 0x68<br>(104)<br>1 to 2<br>0x0A (10)               |                        | 4010              | float<br>RWES                                      |
| with other                        | r interfaces.                                                                                                                                                                   | ne four-character display. Full values c<br>nu, no submenus will appear. | an be read |                                                                                                |                                                    |                        |                   | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |

| Dis-<br>play                                                                                                                                                                                  | Parameter Name<br>Description                                                                                 | Range                   | Default | Modbus<br>Relative Ad-<br>dress                                                                                 | CIP<br>Class<br>Instance<br>Attribute<br>hex (dec) | Pro-<br>fibus<br>Index | Param-<br>eter ID                                  | Data Type & Read/ Write |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|---------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|-------------------------|
| [EL .5]                                                                                                                                                                                       | Calibration (1 to 2) Electrical Input Slope Adjust this value to calibrate the slope of the input value.      | -1,999.000 to 9,999.000 | 1.0     | Instance 1   Map 1   Map 2   380   380   Instance 2   Map 1   Map 2   460   470                                 | 0x68<br>(104)<br>1 to 2<br>0xB (11)                |                        | 4011                                               | float<br>RWES           |
| [ELo.o]                                                                                                                                                                                       | Calibration (1 or 3) Electrical Output Offset Change this value to calibrate the low end of the output range. | -1,999.000 to 9,999.000 | 0.0     | Instarce 1         Map 1       Map 2         728       848         Instarce 3       Map 1         808       928 | 0x76<br>(118)<br>1 or 3<br>5                       |                        | 18005                                              | float<br>RWES           |
| EL 0.5<br>[ELo.S]                                                                                                                                                                             | Calibration (1 or 3) Electrical Output Slope Adjust this value to calibrate the slope of the output value.    | -1,999.000 to 9,999.000 | 1.0     | Instance 1   Map 1   Map 2   730   850   Instance 3   Map 1   Map 2   810   930                                 | 0x76<br>(118)<br>1 or 3<br>6                       |                        | 18006                                              | float<br>RWES           |
| Note: Some values will be rounded off to fit in the four-character display. Full values can be read with other interfaces.  If there is only one instance of a menu, no submenus will appear. |                                                                                                               |                         |         |                                                                                                                 |                                                    |                        | R: Read<br>W: Write<br>E: EEPROM<br>S: User<br>Set |                         |

# **Chapter 9: Features**

| Saving and Restoring User Settings                  | 114 |
|-----------------------------------------------------|-----|
| Tuning the PID Parameters                           | 114 |
| Autotuning with TRU-TUNE+®                          | 115 |
| Inputs                                              | 116 |
| Calibration Offset                                  | 116 |
| Calibration                                         |     |
| Filter Time Constant                                |     |
| Sensor Selection                                    |     |
| Sensor Backup                                       |     |
| Scale High and Scale Low                            |     |
| Range High and Range Low                            |     |
| Receiving a Remote Set Point                        |     |
|                                                     |     |
| Outputs                                             |     |
| NO-ARC Relay                                        |     |
| Retransmitting a Process Value or Set Point         |     |
| Cool Output Curve                                   |     |
| Resetting a Tripped Limit                           |     |
| Control Methods                                     |     |
| Output Configuration                                |     |
| Auto (closed loop) and Manual (open loop) Control   |     |
| On-Off Control                                      |     |
| Proportional and (P) Control                        |     |
| Proportional and Integral (PI) Control              |     |
| Proportional, Integral and Derivative (PID) Control |     |
| Dead Band                                           |     |
| Variable Time Base                                  |     |
| Single Set Point Ramping                            |     |
| Cascade Control                                     |     |
| Compressor Control                                  |     |
| Differential Control                                |     |
| Duplex Control                                      |     |
| Motorized Valve Control                             |     |
| Alarms                                              |     |
| Process and Deviation Alarms                        |     |
| Alarm Set Points.                                   |     |
| Alarm Hysteresis                                    |     |
| Alarm Latching                                      |     |
| Alarm Silencing                                     | 126 |
| Alarm Blocking                                      | 126 |
| Current Sensing                                     | 126 |
| Open Loop Detection                                 | 126 |
| Programming the EZ Key/s                            | 126 |
| Using Password Security                             |     |
| Modbus - Using Programmable Memory Blocks           |     |
| CIP - Communications Capabilities                   |     |
| Profibus DP - (Decentralized Peripherals)           |     |
| Software Configuration                              |     |
| OUILWAIT CUIIIIYUTALIUII                            | 132 |

# **Saving and Restoring User Settings**

Recording setup and operations parameter settings for future reference is very important. If you unintentionally change these, you will need to program the correct settings back into the controller to return the equipment to operational condition.

After you program the controller and verify proper operation, use User Settings Save [[5].5] (Setup Page, Global Menu) to save the settings into either of two files in a special section of memory. If the settings in the controller are altered and you want to return the controller to the saved values, use User Settings Restore [[5].] (Setup Page, Global Menu) to recall one of the saved settings.

A digital input or the Function Key can also be configured to restore parameters.

### Note:

Only perform the above procedure when you are sure that all the correct settings are programmed into the controller. Saving the settings overwrites any previously saved collection of settings. Be sure to document all the controller settings.

### Note:

I/O assemblies for Modbus, DeviceNet, Profibus and Ethernet will be overwritten when restoring factory defaults.

# **Tuning the PID Parameters**

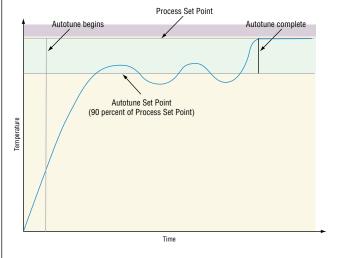
# **Autotuning**

When an autotune is performed on the EZ-ZONE® PM, the set point is used to calculate the tuning set point.

For example, if the active set point is 200° and Autotune Set Point **RESP** (Operations Page, Loop Menu) is set to 90 percent, the autotune function utilizes 180° for tuning. This is also how autotuning works in previous Watlow Winona controllers. In addition, changing the active set point in previous controllers causes the autotune function to restart; where with the EZ-ZONE® PM changing the set point after an autotune has been started has no affect.

A new feature in EZ-ZONE® PM products will allow set point changes while the control is autotuning, this includes while running a profile or ramping. When the auto tune is initially started it will use the current set point and will disregard all set point changes until the tuning process is complete. Once complete, the controller will then use the new set point.

This is why it is a good idea to enter the active set point before initiating an autotune.


Autotuning calculates the optimum heating and/ or cooling PID parameter settings based on the system's response. Autotuning can be enabled whether or not TUNE-TUNE+TM is enabled. The PID settings generated by the autotune will be used until the autotune feature is rerun, the PID values are manually adjusted or TRU-TUNE+® is enabled.

To initiate an autotune, set Autotune Request **RUE** (Operations Page, Loop Menu) to **YE5**. You should not autotune while a profile is running. If the autotune cannot be completed in 60 minutes, the autotune will time-out and the original settings will take effect.

The lower display will flash between **EURE** and the set point while the autotuning is underway. The temperature must cross the Autotune Set Point five times to complete the autotuning process. Once complete, the controller controls at the normal set point, using the new parameters.

Select a set point for the tune with Autotune Set Point. The Autotune Set Point is expressed as a percent of the Closed Loop Set Point.

If you need to adjust the tuning procedure's aggressiveness, use Autotune Aggressiveness **LAG** (Setup Page, Loop Menu). Select Under Damped **Und** to bring the process value to the set point quickly. Select over damped **QUE** to bring the process value to the set point with minimal overshoot. Select critical damped **[r.k]** to balance a rapid response with minimal overshoot.



# **Manual Tuning**

In some applications, the autotune process may not provide PID parameters for the process characteristics you desire. If that is the case, you may want to tune the controller manually.

- 1. Apply power to the controller and establish a set point typically used in your process.
- 2. Go to the Operations Page, Loop Menu, and set Heat Proportional Band **LPb** and/or Cool Proportional Band **LPb** to 5. Set Time Integral **b** to 0. Set Time Derivative **b** to 0.
- 3. When the system stabilizes, watch the process value. If it fluctuates, increase the Heat Proportional Band or Cool Proportional Band value in 3 to 5° increments until it stabilizes, allowing time

- for the system to settle between adjustments.
- 4. When the process has stabilized, watch Heat Power h.Pr or Cool Power L.Pr (Operations Page, Monitor Menu). It should be stable ±2%. At this point, the process temperature should also be stable, but it will have stabilized before reaching the set point. The difference between the set point and actual process value can be eliminated with Integral.
- 5. Start with an Integral value of 6,000 and allow 10 minutes for the process temperature to reach the set point. If it has not, reduce the setting by half and wait another 10 minutes. Continue reducing the setting by half every 10 minutes until the process value equals the set point. If the process becomes unstable, the Integral value is too small. Increase the value until the process stabilizes.
- 6. Increase Derivative to 0.1. Then increase the set point by 11° to 17°C. Monitor the system's approach to the set point. If the process value overshoots the set point, increase Derivative to 0.2. Increase the set point by 11° to 17°C and watch the approach to the new set point. If you increase Derivative too much, the approach to the set point will be very sluggish. Repeat as necessary until the system rises to the new set point without overshoot or sluggishness.

For additional information about autotune and PID control, see related features in this chapter.

# **Autotuning with TRU-TUNE+®**

The TRU-TUNE+® adaptive algorithm will optimize the controller's PID values to improve control of dynamic processes. TRU-TUNE+® monitors the Process Value and adjusts the control parameters automatically to keep your process at set point during set point and load changes. When the controller is in the adaptive control mode, it determines the appropriate output signal and, over time, adjusts control parameters to optimize responsiveness and stability. The TRU-TUNE+® feature does not function for on-off control

The preferred and quickest method for tuning a loop is to establish initial control settings and continue with the adaptive mode to fine tune the settings.

Setting a controller's control mode to tune starts this two-step tuning process. (See Autotuning in this chapter.) This predictive tune determines initial, rough settings for the PID parameters. Then the loop automatically switches to the adaptive mode which fine tunes the PID parameters.

Once the Process Value has been at set point for a suitable period (about 30 minutes for a fast process to roughly two hours for a slower process) and if no further tuning of the PID parameters is desired or needed, TRU-TUNE+TM may be turned off. However, keeping the controller in the adaptive mode allows it

to automatically adjust to load changes and compensate for differing control characteristics at various set points for processes that are not entirely linear.

Once the PID parameters have been set by the TRU-TUNE+ $^{\text{TM}}$  adaptive algorithm, the process, if shut down for any reason, can be restarted in the adaptive control mode.

Turn TRU-TUNE+ $^{TM}$  on or off with TRU-TUNE+ $^{TM}$  Enable  $\boxed{\textbf{E,EUn}}$  (Setup Page, Loop Menu).

Use TRU-TUNE+<sup>TM</sup> Band **E.bnd** (Setup Page, Loop Menu) to set the range above and below the set point in which adaptive tuning will be active. Adjust this parameter only in the unlikely event that the controller is unable to stabilize at the set point with TRU-TUNE+<sup>TM</sup> Band set to auto (0). This may occur with very fast processes. In that case, set TRU-TUNE+<sup>TM</sup> Band to a large value, such as 100.

Use TRU-TUNE+TM Gain **E.S.** (Setup Page, Loop Menu) to adjust the responsiveness of the adaptive tuning calculations. Six settings range from 1, with the most aggressive response and most potential overshoot (highest gain), to 6, with the least aggressive response and least potential for overshoot (lowest gain). The default setting, 3, is recommended for loops with thermocouple feedback and moderate response and overshoot potential.

# **Before Tuning**

Before autotuning, the controller hardware must be installed correctly, and these basic configuration parameters must be set:

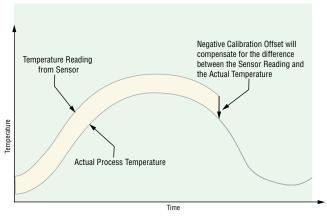
- Sensor Type **5En** (Setup Page, Analog Input Menu), and scaling, if required;
- Function Fn (Setup Page, Output Menu) and scaling, if required.

## **How to Autotune a Loop**

- 1. Enter the desired set point or one that is in the middle of the expected range of set points that you want to tune for.
- 2. Enable TRU-TUNE+®.
- 3. Initiate an autotune. (See Autotuning in this chapter.)

When autotuning is complete, the PID parameters should provide good control. As long as the loop is in the adaptive control mode, TRU-TUNE+® continuously tunes to provide the best possible PID control for the process.




WARNING! During autotuning, the controller sets the output to 100 percent and attempts to drive the Process Value toward the set point. Enter a set point and heat and cool power limits that are within the safe operating limits of your system.

# **Inputs**

### Calibration Offset

Calibration offset allows a device to compensate for an inaccurate sensor, lead resistance or other factors that affect the input value. A positive offset increases the input value, and a negative offset decreases the input value.

The input offset value can be viewed or changed with Calibration Offset (Operations Page, Analog Input Menu).



### Calibration

Before performing any calibration procedure, verify that the displayed readings are not within published specifications by inputting a known value from a precision source to the analog input. Next, subtract the displayed value with the known value and compare this difference to the published accuracy range specification for that type of input.

Use of the Calibration Offset ...[R] parameter found in the Operations Page [PFr], Analog Input Menu R. shifts the readings across the entire displayed range by the offset value. Use this parameter to compensate for sensor error or sensor placement error. Typically this value is set to zero.

Equipment required while performing calibration: Obtain a precision source for millivolts, volts, milliamperes or resistance depending on the sensor type to be calibrated. Use copper wire only to connect the precision source to the controller's input. Keep leads between the precision source and controller as short as possible to minimize error. In addition, a precision volt/ohm meter capable of reading values to 4 decimal places or better is recommended. Prior to calibration, connect this volt/ohm meter to the precision source to verify accuracy.

Actual input values do NOT have to be exactly the recommended values, but it IS critical that the actual value of the signal connected to the controller be accurately known to at least four digits.

### **Calibration of Analog Inputs:**

To calibrate an analog input, you will need to provide a source of two electrical signals or resistance values near the extremes of the range that the application is likely to utilize. See recommended values below:

| Sensor Type                      | Precision<br>Source Low | Precision<br>Source High |
|----------------------------------|-------------------------|--------------------------|
| thermocouple                     | 0.000 mV                | 50.000 mV                |
| millivolts                       | 0.000 mV                | 50.000 mV                |
| volts                            | 0.000V                  | 10.000V                  |
| milliamps                        | 0.000 mA                | 20.000 mA                |
| 100 Ω RTD                        | $50.00~\Omega$          | $350.0~\Omega$           |
| 1,000 Ω RTD                      | 500.0 Ω                 | $3,500~\Omega$           |
| thermistor 5 k $\Omega$          | 50.00                   | 5,000                    |
| thermistor $10 \text{ k}\Omega$  | 150.0                   | 10,000                   |
| thermistor $20~k\Omega$          | 1,800                   | 20,000                   |
| thermistor $40~\mathrm{k}\Omega$ | 1,700                   | 40,000                   |
| potentiometer                    | 0.000                   | 1,200                    |

### Note:

The user may only calibrate one sensor type. If the calibrator interferences with open thermocouple detection, set Sensor Type 5En in Setup Page 5EE, Analog Input Menu R, to millivolt reference between the calibrator and open thermocouple detect circuit for the duration of the calibration process. Be sure to set sensor type back to the thermocouple type utilized.

- 1. Disconnect the sensor from the controller.
- 2. Record the Calibration Offset \_\_\_\_\_\_ parameter value in the Operations Page \_\_\_\_\_\_, Analog Input Menu \_\_\_\_\_\_\_, then set value to zero.
- 3. Wire the precision source to the appropriate controller input terminals to be calibrated. Do not have any other wires connected to the input terminals. Please refer to the Install and Wiring section of this manual for the appropriate connections.
- 4. Ensure the controller sensor type is programmed to the appropriate Sensor Type **5**En to be utilized in the Setup Page **5**EE, Analog Input Menu **R**.
- 5. Enter Factory Page **F[EY]**, Calibration Menu **[RL]** via RUI or EZ-ZONE Configurator Software.
- 6. Select the Calibration **[FI]** input instance to be calibrated. This corresponds to the analog input to be calibrated.
- 7. Set Electrical Input Slope **EL.,5** to 1.000 and Electrical Input Offset **EL.,0** to 0.000 (this will cancel any prior user calibration values)
- 8. Input a Precision Source Low value. Read Electrical Measurement value **[77]** of controller via EZ-Configurator or RUI. This will be referred to as Electrical Measured Low.

| Record low value |
|------------------|
|------------------|

9. Input a Precision Source High value.

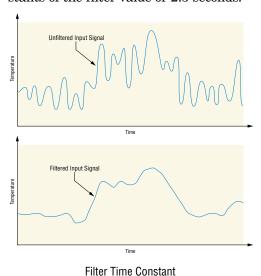
10.Read Electrical Measurement value 770 of controller via EZ-Configurator or RUI. This will be referred to as Electrical Measured High. Record high value

11. Calculated Electrical Input Slope = (Precision High - Precision Low) / (Electrical Measured High Electrical Measured Low)

Calculated Slope value

12. Calculated Electrical Input Offset = Precision Low – (Electrical Input Slope \* Measured Low)

Calculated Offset value


- 13.Enter the calculated Electrical Input Slope EL ..5 and Electrical Input Offset EL ... into the controller.
- 14. Exit calibration menu.
- 15. Validate calibration process by utilizing a calibrator to the analog input.
- 16. Enter calibration offset as recorded in step 2 if required to compensate for sensor error.

Setting Electrical Input Slope  $\[\mathbf{EL}\]$  to 1.000 and Electrical Input Offset **EL** ... to 0.000, restores factory calibration as shipped from factory.

### **Filter Time Constant**

Filtering smoothes an input signal by applying a first-order filter time constant to the signal. Filtering the displayed value makes it easier to monitor. Filtering the signal may improve the performance of PID control in a noisy or very dynamic system.

Adjust the filter time interval with Filter Time F (Setup Page, Analog Input Menu). Example: With a filter value of 0.5 seconds, if the process input value instantly changes from 0 to 100 and remained at 100, the display will indicate 100 after five time constants of the filter value or 2.5 seconds.



### **Sensor Selection**

You need to configure the controller to match the input device, which is normally a thermocouple, RTD or process transmitter.

Select the sensor type with Sensor Type **5**En (Setup Page, Analog Input Menu).

# Sensor Backup

Sensor backup maintains closed-loop control after an input failure by switching control to input 2. The sensor backup feature is only available in an EZ-ZONE PM Integrated Limit or Remote Set Point controller. Turn sensor backup on or off with Sensor Backup Enable **5.68** (Setup Page, Analog Input 1).

When Sensor Backup is enabled the Process Value function will automatically set itself to Sensoe Backup.

# Set Point Low Limit and High Limit

The controller constrains the set point to a value between a set point low limit and a set point high limit.

Set the set point limits with Low Set Point **L.5P** and High Set Point **h.5P** (Setup Page, Loop Menu).

There are two sets of set point low and high limits: one for a closed-loop set point, another for an open-loop set point.



Range Low and Range High

# Scale High and Scale Low

When an analog input is selected as process voltage or process current input, you must choose the value of voltage or current to be the low and high ends. For example, when using a 4 to 20 mA input, the scale low value would be 4.00 mA and the scale high value would be 20.00 mA. Commonly used scale ranges are: 0 to 20 mA, 4 to 20 mA, 0 to 5V, 1 to 5V and 0 to 10V.

You can create a scale range representing other units for special applications. You can reverse scales from high values to low values for analog input signals that have a reversed action. For example, if 50 psi causes a 4 mA signal and 10 psi causes a 20 mA signal.

Scale low and high low values do not have to match the bounds of the measurement range. These along with range low and high provide for process scaling and can include values not measureable by the controller. Regardless of scaling values, the measured value will be constrained by the electrical measurements of the hardware.

Select the low and high values with Scale Low **5.Lo** and Scale High **5.h**. Select the displayed range with Range Low **c.Lo** and Range High (Setup Page, Analog Input Menu).

# Range High and Range Low

With a process input, you must choose a value to represent the low and high ends of the current or voltage range. Choosing these values allows the controller's display to be scaled into the actual working units of measurement. For example, the analog input from a humidity transmitter could represent 0 to 100 percent relative humidity as a process signal of 4 to 20 mA. Low scale would be set to 0 to represent 4 mA and high scale set to 100 to represent 20 mA. The indication on the display would then represent percent humidity and range from 0 to 100 percent with an input of 4 to 20 mA.

Select the low and high values with Range Low \_\_\_\_, and Range High \_\_\_, (Setup Page, Analog Input Menu).

# **Receiving a Remote Set Point**

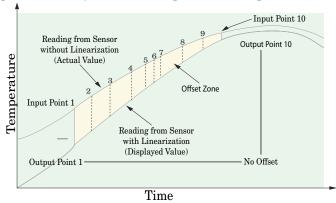
The remote set point feature allows the controller to use a thermocouple, RTD, 1 k potentiometer or process signal at input 2 to establish the set point, which allows its set point to be manipulated by an external source. A common application would use one ramping controller with a set-point retransmit output to ramp multiple controllers using the remote set point. Or you could use an analog output from a PLC to send set point values to an EZ-ZONE PM.

The controller must have two process inputs to use the remote set point feature.

You may select between local and remote set points at the front panel, with an event input, from a remote computer using the communications feature or from an external switch using an event input. Make sure all input and output impedances are compatible.

Switch to the remote set point with Remote Enable \_\_r.En (Operations Page, Loop Menu). Select whether the remote set point controls an open- or closed-loop set point with Remote Set Point Type \_\_r.E \_\_\_\_.

Assign the function of switching to a remote set point to a digital input with Digital Input Function Fo (Setup Page, Digital Input Menu).


Assign the function of switching to a remote set point to the EZ Key with Digital Input Function F<sub>n</sub> (Setup Page, Function Key Menu).

### Ten Point Linearization

The linearization function allows a user to re-linearize a value read from an analog input. There are 10 data points used to compensate for differences between the sensor value read (input point) and the desired value (output point). Multiple data points enable compensation for non-linear differences between the sensor readings and target process values over the thermal or process system operating range. Sensor

reading differences can be caused by sensor placement, tolerances, an inaccurate sensor or lead resistance.

The user specifies the unit of measurement and then each data point by entering an input point value and a corresponding output point value. Each data point must be incrementally higher than the previous point. The linerization function will interpolate data points linearly in between specified data points.



# **Outputs**

# **Duplex**

Certain systems require that a single process output control both heating and cooling outputs. An EZ-ZONE $^{\otimes}$  PM controller with a process output can function as two separate outputs.

With a 4 to 20mA output the heating output will operate from 12 to 20mA (0 to +100 percent) and the cooling output will operate from 12 to 4mA (0 to -100 percent).

In some cases this type of output is required by the device that the EZ-ZONE PM controls, such as a three-way valve that opens one way with a 12 to 20mA signal and opens the other way with a 4 to 12mA signal. This feature reduces the overall system cost by using a single output to act as two outputs.

Outputs 1 and 3 can be ordered as process outputs. Select duplex <u>GUPL</u> as the Output Function <u>Fn</u> (Setup Page, Output Menu). Set the output to volts <u>ual E</u> or milliamps <u>FnR</u> with Output Type <u>a.E Y</u>. Set the range of the process output with Scale Low <u>5.Lo</u> and Scale High <u>5.Lo</u>.

## **NO-ARC** Relay

A NO-ARC relay provides a significant improvement in the life of the output relay over conventional relays.

Conventional mechanical relays have an expected life of 100,000 cycles at the rated full-load current. The shorter life for conventional relays is due to the fact that when contacts open while current is flowing metal degradation occurs. This action produces unavoidable electrical arcing causing metal to transfer from one contact to the other. The arcing conditions

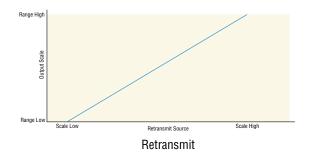
continue on each subsequent contact opening until over time the resistance through the contacts increases causing the contacts to increase in temperature. Eventually, the contacts will weld together and the relay remains in the on state.

The Watlow NO-ARC relay is a hybrid relay. It uses a mechanical relay for the current load and a triac (solid-state switch) to carry the turn-on and turn-off currents. NO-ARC relays extend the life of the relay more than two million cycles at the rated full-load current.

Although a NO-ARC relay has significant life advantages, a few precautions must be followed for acceptable usage:

### Do not use:

- hybrid relays for limit contactors. A limit or safety device must provide a positive mechanical break on all hot legs simultaneously;
- dc loads with hybrid relays. The triacs used for arc suppression will turn off only with ac line voltage;
- hybrid switches to drive any inductive loads, such as relay coils, transformers or solenoids;
- cycle times less than five seconds on hybrid switches;
- on loads that exceed 264V ac through relay;
- on loads that exceed 15 amperes load;
- on loads less than 100 mA;
- NO-ARC relays in series with other NO-ARC relays.


# Retransmitting a Process Value or Set Point

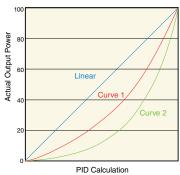
The retransmit feature allows a process output to provide an analog signal that represents the set point or process value. The signal may serve as a remote set point for another controller or as an input for a chart recorder documenting system performance over time.

In choosing the type of retransmit signal the operator must take into account the input impedance of the device to be retransmitted to and the required signal type, either voltage or milliamps.

Typically applications might use the retransmit option to record one of the variables with a chart recorder or to generate a set point for other controls in a multi-zone application.

Outputs 1 and 3 can be ordered as process outputs. Select retransmit \( \bar{\rho} \bar{\gamma} = \bar{\rho} \




Set the range of the process output with Scale Low 5.60 and Scale High 5.60. Scale the retransmit source to the process output with Range Low 6.60 and Range High 6.60.

When the retransmit source is at the Range Low value, the retransmit output will be at its Scale Low value. When the retransmit source is at the Range High value, the retransmit output will be at its Scale High value.

# **Cool Output Curve**

A nonlinear output curve may improve performance when the response of the output device is nonlinear. If a cool output uses one of the nonlinear curves a PID calculation yields a lower actual output level than a linear output would provide.

These output curves are used in plastics extruder applications: curve 1 for oil-cooled extruders and curve 2 for water-cooled extruders.



Select a nonlinear cool output curve with Cool Output Curve (Setup Menu, Loop Menu).

# **Resetting a Tripped Limit**

To check the firmware revision of your control do one of the following:

- 1. Cycle power to the control while observing the number in the top display (this momentary numerical display reflects the current installed firmware version).
- 2. Navigate to the Factory Page by simultaneously pushing and holding the Advance Key and the Reset Key for approximately 8 seconds and then use the up or down arrow key to navigate to the Diagnostic Menu. Once there, push the Advance Key twice where the revision regular will be shown in the lower display and the upper display will indicate the current firmware revision.

# Execute One of the Following Steps to Reset a Tripped Limit Prior to Firmware Release 11.0:

- 1. Push the Reset Key
- 2. Configure a digital input with the Action Function set to Limit Reset (navigate to the Setup Page under the Digital I/O Menu).
- 3. Use a field bus protocol, i.e., Modbus, EtherNet/IP, etc...where a value of zero would be written to the associated address (navigate to the Operations Page and look for Limit Clear Request under the Limit Menu to find appropriate address).
- 4. Cycle the power to the controller.

# Execute One of the Following Steps to Reset a Tripped Limit with Firmware Release 11.0 and above:

- 1. Push the Reset Key
- 2. Follow the steps below:
  - 2a. Navigate to the Setup Page and then the Limit Menu
  - 2b. Set Source Function A to the desired device that will reset the limit (Digital I/O or Function Key)
  - 2c. Define the Source Instance
- 3. Use a field bus protocol, i.e., Modbus, EtherNet/IP, etc...where a value of zero would be written to the associated address (navigate to the Operations Page and look for Limit Clear Request under the Limit Menu to find appropriate address).
- 4. Cycle the power to the controller.

# **Control Methods**

## **Output Configuration**

Each controller output can be configured as a heat output, a cool output, an alarm output or deactivated. No dependency limitations have been placed on the available combinations. The outputs can be configured in any combination. For instance, all three could be set to cool.

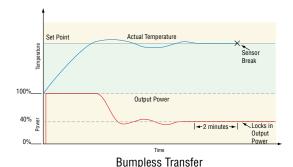
Heat and cool outputs use the set point and Operations parameters to determine the output value. All heat and cool outputs use the same set point value.

Heat and cool each have their own set of control parameters. All heat outputs use the same set of heat control parameters and all cool outputs use the same set of cool output parameters.

Each alarm output has its own set of configuration parameters and set points, allowing independent operation.

# Auto (closed loop) and Manual (open loop) Control

The controller has two basic modes of operation, auto mode and manual mode. Auto mode allows the controller to decide whether to perform closed-loop control or to follow the settings of Input Error Failure FR.L (Setup Page, Loop Menu). The manual mode only allows open-loop control. The EZ-ZONE® PM controller is normally used in the auto mode. The manual mode is usually only used for specialty applications or for troubleshooting.


Manual mode is open-loop control that allows the user to directly set the power level to the controller's output load. No adjustments of the output power level occur based on temperature or set point in this mode.

In auto mode, the controller monitors the input to determine if closed-loop control is possible. The controller checks to make certain a functioning sensor is providing a valid input signal. If a valid input signal is present, the controller will perform closed-loop control. Closed-loop control uses a process sensor to determine the difference between the process value and the set point. Then the controller applies power to a control output load to reduce that difference.

If a valid input signal is not present, the controller will indicate an input error message in the upper display and <code>FE</code> in the lower display and respond to the failure according to the setting of Input Error Failure <code>FR.L</code>. You can configure the controller to perform a bumpless transfer <code>bpl5</code>, switch power to output a preset fixed level <code>[??Rn]</code>, or turn the output power off.

Bumpless transfer will allow the controller to transfer to the manual mode using the last power value calculated in the auto mode if the process had stabilized at a  $\pm 5$  percent output power level for the time interval of Time Integral (Operations Page, Loop) prior to sensor failure, and that power level is less than 75 percent.

Reverse Bumpless functionality will take effect when the control is changed from Manual to Auto mode. The control will preload the Open Loop Set Point value into the Integral Term, which will allow for a bumpless transition. The normal PID action will then take over to control the output to the Closed Loop Set Point value.



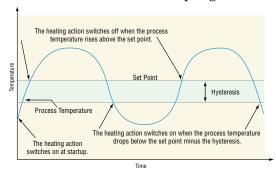
Input Error Latching LEC (Setup Page, Analog Input Menu) determines the controller's response once a valid input signal returns to the controller. If latching is on, then the controller will continue to indicate an input error until the error is cleared. To clear a latched alarm, press the Advance Key then the Up Key .

If latching is off, the controller will automatically clear the input error and return to reading the temperature. If the controller was in the auto mode when the input error occurred, it will resume closed-loop control. If the controller was in manual mode when the error occurred, the controller will remain in open-loop control.

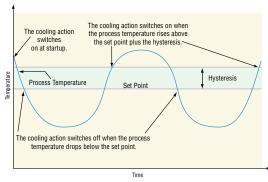
The Manual Control Indicator Light % is on when the controller is operating in manual mode.

To transfer to manual mode from auto mode, press the Advance Key until **[]** appears in the lower display. The upper display will display for auto mode. Use the Up or Down keys to select **[]** The manual set point value will be recalled from the last manual operation.

To transfer to auto mode from manual mode, press the Advance Key • until \( \bigcup\_\mathbb{T} \) appears in the lower display. The upper display will display \( \bigcup\_\mathbb{T} \bar{R}\_\mathbb{n} \) for manual mode. Use the Up • or Down • keys to select \( \bar{R}U\mathbb{E}\_\mathbb{O} \). The automatic set point value will be recalled from the last automatic operation.


Changes take effect after three seconds or immediately upon pressing either the Advance Key 
or the Infinity Key .

### **On-Off Control**


On-off control switches the output either full on or full off, depending on the input, set point and hysteresis values. The hysteresis value indicates the amount the process value must deviate from the set point to turn on the output. Increasing the value decreases the number of times the output will cycle. Decreasing hysteresis improves controllability. With hysteresis set to 0, the process value would stay closer to the set point, but the output would switch on and off more frequently, and may result in the output "chattering." On-off control can be selected with Heat Algorithm has or Cool Algorithm (Setup)

### Note

Input Error Failure Mode **FRIL** does not function in on-off control mode. The output goes off.

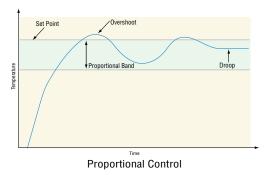


On/Off System Cycles



On/Off System Cycles

# Proportional and (P) Control


Some processes need to maintain a temperature or process value closer to the set point than on-off control can provide. Proportional control provides closer control by adjusting the output when the temperature or process value is within a proportional band. When the value is in the band, the controller adjusts the output based on how close the process value is to the set point.

The closer the process value is to the set point, the lower the output power. This is similar to backing off on the gas pedal of a car as you approach a stop sign. It keeps the temperature or process value from swinging as widely as it would with simple on-off control. However, when the system settles down, the temperature or process value tends to "droop" short of the set point.

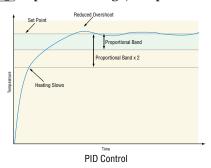
With proportional control the output power level equals (set point minus process value) divided by the proportional band value.

In an application with one output assigned to heating and another assigned to cooling, each will have a separate proportional parameter. The heating parameter takes effect when the process temperature is lower than the set point, and the cooling parameter takes effect when the process temperature is higher than the set point.

Adjust the proportional band with Heat Proportional Band **h.Pb** or Cool Proportional Band **C.Pb** (Operations Page, Loop Menu).



# Proportional and Integral (PI) Control


The droop caused by proportional control can be corrected by adding integral (reset) control. When the system settles down, the integral value is tuned to bring the temperature or process value closer to the set point. Integral determines the speed of the correction, but this may increase the overshoot at start-up or when the set point is changed. Too much integral action will make the system unstable. Integral is cleared when the process value is outside of the proportional band.

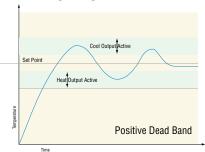
# Proportional, Integral and Derivative (PID) Control

Use derivative (rate) control to minimize the overshoot in a PI-controlled system. Derivative (rate) adjusts the output based on the rate of change in the temperature or process value. Too much derivative (rate) will make the system sluggish.

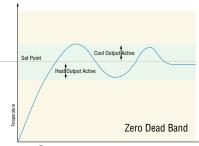
Derivative action is active only when the process value is within twice the proportional value from the set point.

Adjust the derivative with Time Derivative **Ed** (Operations Page, Loop Menu).

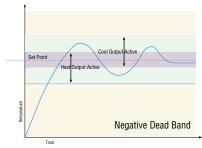



### **Dead Band**

In a PID application the dead bands above and below the set point can save an application's energy and wear by maintaining process temperature within acceptable ranges.


Proportional action ceases when the process value is within the dead band. Integral action continues to

bring the process temperature to the set point.


Using a **positive dead band value** keeps the two systems from fighting each other.



When the **dead band value is zero**, the heating output activates when the temperature drops below the set point, and the cooling output switches on when the temperature exceeds the set point.

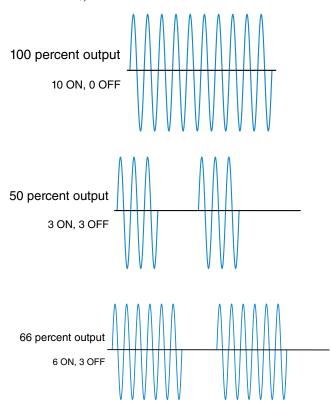


When the **dead band value is a negative value,** both heating and cooling outputs are active when the temperature is near the set point.



Adjust the dead band with Dead Band **db** (Operations Page, Loop Menu).

### Variable Time Base


Variable time base is the preferred method for controlling a resistive load, providing a very short time base for longer heater life. Unlike phase-angle firing, variable-time-base switching does not limit the current and voltage applied to the heater.

With variable time base outputs, the PID algorithm calculates an output between 0 and 100%, but the output is distributed in groupings of three ac line cycles. For each group of three ac line cycles, the controller decides whether the power should be on or off. There is no fixed cycle time since the decision is made for each group of cycles. When used in conjunction with a zero cross (burst fire) device, such as a solid-state power controller, switching is done only at the zero cross of the ac line, which helps reduce electrical noise (RFI).

Variable time base should be used with solid-state power controllers, such as a solid-state relay (SSR) or silicon controlled rectifier (SCR) power controller. Do not use a variable time base output for controlling electromechanical relays, mercury displacement relays, inductive loads or heaters with unusual resistance characteristics.

The combination of variable time base output and a solid-state relay can inexpensively approach the effect of analog, phase-angle fired control.

Select the AC Line Frequency  $\boxed{\textit{RLLF}}$  (Setup Page, Global Menu), 50 or 60 Hz.



### Note:

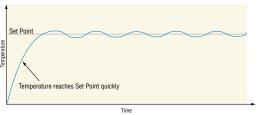
When output 1 is a universal process output, output 2 cannot use variable time base, fixed time base only. When output 3 is configured as a universal process, output 4 cannot use variable time base, fixed time base only.

# Single Set Point Ramping

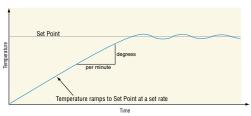
Ramping protects materials and systems that cannot tolerate rapid temperature changes. The value of the ramp rate is the maximum degrees per minute or hour that the system temperature can change.

Select Ramp Action (Setup Page, Loop Menu):

**oFF** ramping not active.


**5** Framp at startup.

**5***EPE* ramp at a set point change.

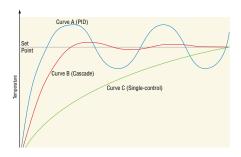

**both** ramp at startup or when the set point changes.

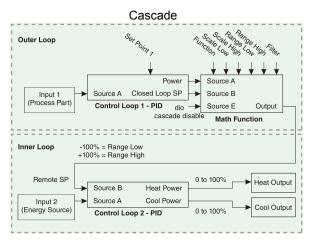
Select whether the rate is in degrees per minute or

degrees per hour with Ramp Scale \_\_\_\_\_. Set the ramping rate with Ramp Rate \_\_\_\_\_. (Setup Page, Loop Menu).



Heating System without Ramping

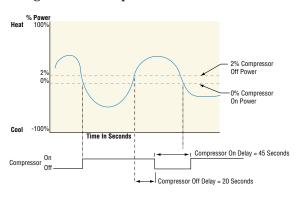




Heating System with Ramping

### **Cascade Control**

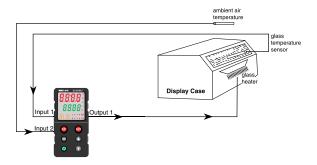
The PM (PM4/8/9) can be configured for Cascade control with enhanced firmware. Cascade control is a control strategy in which one control loop provides the set point for another loop. It allows the process or part temperature to be reached quickly while minimizing overshoot. Cascade is used to optimize the performance of thermal systems with long lag times. The graph to the right illustrates a thermal system with a long lag time.

Curve A represents a single loop control system with PID parameters that allow a maximum heat up rate. Too much energy is introduced and the set point is overshot. In most systems with long lag time, the process value may never settle out to an acceptable error. Curve C represents a single control system tuned to minimize overshoot. This results in unacceptable heat up rates, taking hours to reach the final value. Curve B shows a cascade system that limits the energy introduced into the system, allowing an optimal heat up rate with minimal overshoot. Cascade control uses two control loops (outer and inner) to control the process. The outer loop (analog input 2) monitors the process or part temperature, which is then compared to the set point. The result of the comparison, the error signal, is acted on by the PID settings in the cascade outer loop, which then generates a power level for the outer loop. The set point for the inner loop is determined by the outer loop power level. The inner loop (Analog Input 2) monitors the energy source (heating and cooling). which is compared to the inner loop set point generated by the outer loop. The result of the comparison, the error signal, is acted on by the PID settings in the cascade inner loop, which generates an output power level between -100% to +100%. If the power level is positive the heat will be on; if the power level is negative the cool will come on. Power from the energy sources are supplied by the outputs of choice.






Math Function output equals Source A when Source E is False. Source E disables cascade when True and Math Function output equals PID Loop 1 Closed Loop Set Point.

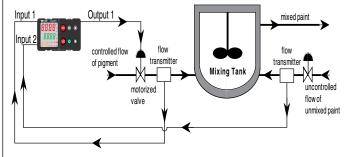

# **Compressor Control**

The PM control can be configured for Compressor control with enhanced firmware. The compressor control can save wear on a compressor and prevent it from locking up from short cycling. A bypass valve operated by a control output regulates how the process is cooled, while another output switches the compressor on and off. The compressor will not turn on until the output power exceeds the Power On Level % for a time longer than the specified On Time. The compressor will not turn off until the output power is equal to or less than the Power Off Level % for a time longer than the specified Off Time.



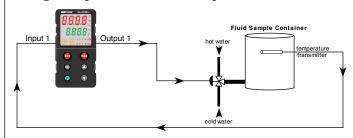
### **Differential Control**

The PM can be configured for Differential Control with enhanced firmware. After configuring the appropriate inputs and their associated internal functions Differential Control allows the PM to drive an output based on the difference between those analog inputs.




# **Ratio Control**

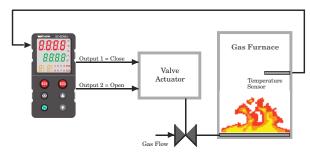
The PM control can be configured for Ratio control with enhanced firmware, especially useful in applications that mix materials. Ratio control is commonly used to ensure that two or more flows are kept at the same ratio even if the flows are changing.


Applications of ratio control:

- Blending two or more flows to produce a mixture with specified composition.
- Blending two or more flows to produce a mixture with specified physical properties.
- Maintaining correct air and fuel mixture to combustion.



## **Duplex Control**


Certain systems require that a single process output control both heating and cooling outputs. A PM control with a process output can function as two separate outputs. With a 4 to 20mA output the heating output, for instance, will operate from 12 to 20mA (0 to +100%) and the cooling outputs will operate from 12 to 4mA (0 to -100%). In some cases this type of output is required by the device, such as a three-way valve that opens one way with a 12 to 20mA signal and opens the other way with a 4 to 12mA signal. This feature reduces the overall system cost by using a single output to act as two outputs.



### **Motorized Valve Control**

A motorized valve is used is to regulate the flow of fluid which in turn impacts the loop process value. A valve is opened or closed by closing contacts to drive the value in the intended direction. This feature is configured by selecting Motorized Valve as the function in the Setup Page, Special Output Function menu. Source Function A is selected for either Heat or Cool Power then entering the Valve Travel Time and Deadband.

Lastly, program the outputs which will open and close the valve. The algorithm will calculate Dead Time which is the minimum on time that the valve will travel once it is turned on in either the closed or open direction. Dead Time = Valve Dead Band / 100 \* Valve Travel Time.



### Note:

See Chapter 10 for application examples

# **Alarms**

Alarms are activated when the output level, process value or temperature leaves a defined range. A user can configure how and when an alarm is triggered, what action it takes and whether it turns off automatically when the alarm condition is over.

Configure alarm outputs in the Setup Page before setting alarm set points.

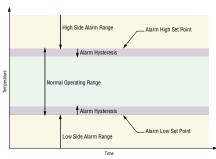
Alarms do not have to be assigned to an output. Alarms can be monitored and controlled through the front panel or by using software.

### **Process and Deviation Alarms**

A process alarm uses one or two absolute set points to define an alarm condition.

A deviation alarm uses one or two set points that are defined relative to the control set point. High and low alarm set points are calculated by adding or subtracting offset values from the control set point. If the set point changes, the window defined by the alarm set points automatically moves with it.

Select the alarm type with Type  $\boxed{\textit{RF Y}}$  (Setup Page, Alarm Menu).


### **Alarm Set Points**

The alarm high set point defines the process value or temperature that will trigger a high side alarm. The alarm low set point defines the temperature that will trigger a low side alarm. For deviation alarms, a negative set point represents a value below closed loop set point. A positive set point represents a value above closed loop set point. View or change alarm set points with Low Set Point **ALO** and High Set Point **ALO** (Operations Page, Alarm Menu).

# **Alarm Hysteresis**

An alarm state is triggered when the process value reaches the alarm high or alarm low set point. Alarm hysteresis defines how far the process must return into the normal operating range before the alarm can be cleared.

Alarm hysteresis is a zone inside each alarm set point. This zone is defined by adding the hysteresis value to the alarm low set point or subtracting the hysteresis value from the alarm high set point. View or change alarm hysteresis with Hysteresis **Rhy** (Setup Page, Alarm Menu).

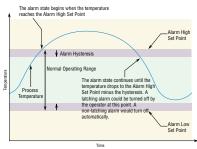


Alarm Set Points and Hysteresis

# **Alarm Latching**

A latched alarm will remain active after the alarm condition has passed. It can only be deactivated by the user.

An active message, such as an alarm message, will cause the display to toggle between the normal settings and the active message in the upper display and <code>RFED</code> in the lower display.


Push the Advance Key • to display .gnr in the upper display and the message source in the lower display.

Use the Up O or Down O keys to scroll through possible responses, such as Clear Lr or Silence 5.1. Then push the Advance O or Infinity key to execute the action.

See the Keys and Displays chapter and the Home Page chapter for more details.

An alarm that is not latched (self-clearing) will deactivate automatically when the alarm condition has passed.

Turn alarm latching on or off with Latching **ALA** (Setup Page, Alarm Menu).



Alarm Response with Hysteresis

# **Alarm Silencing**

If alarm silencing is on the operator can disable the alarm output while the controller is in an alarm state. The process value or temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm output function again.

An active message, such as an alarm message, will cause the display to toggle between the normal settings and the active message in the upper display and <code>FELD</code> in the lower display.

Push the Advance Key • to display \_\_\_\_\_ in the upper display and the message source in the lower display.

Use the Up ② and Down ② keys to scroll through possible responses, such as Clear [[L]] or Silence [5]. Then push the Advance ③ or Infinity ② key to execute the action.

See the Keys and Displays chapter and the Home Page chapter for more details.

Turn alarm silencing on or off with Silencing

(Setup Page, Alarm Menu).

### **Alarm Blocking**

Alarm blocking allows a system to warm up after it has been started up. With alarm blocking on, an alarm is not triggered when the process temperature is initially lower than the alarm low set point or higher than the alarm high set point. The process temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm function.

If the EZ-ZONE PM has an output that is functioning as a deviation alarm, the alarm is blocked when the set point is changed, until the process value re-enters the normal operating range.

Turn alarm blocking on or off with Blocking **RBL** (Setup Page, Alarm Menu).

# **Current Sensing**

When utilizing the Current Sensing capabilities of this control it is important to know that the measurements taken utilize the AC Line Frequency **ACLF** setting found in the Global Menu of the Setup Page. If this setting does not represent the incoming line frequency of this control the readings will be in error and may appear to be frozen. Gen-

erally speaking, the RMS value is displayed when viewing the Current **LU.** prompt. The display will appear frozen with no current flow and will be erroneous below 2 mA.

### Note:

If an alarm is configured to monitor current as its source, the low alarm will be effective only when the current level is equal to or greater than 2 mA. If there is no current present, the low alarm will not be activated.

### **Open and Shorted Load Circuit Detection**

A Current Error **LEr** (Operations Page, Current Menu) can detect either an open or shorted load condition. A shorted condition would be present if the control is calling for 0% power while current is detected as flowing through the current transformer. Conversely, an open condition would be present when the control is calling for power with no current flow detected through the transformer.

A Heater Error \_h,E\_r (Operations Page, Current Menu) is used to determine if the load current flow is within the specified limits as set by the user through the Current Set Points (Current High Set Point \_[, h\_i]) and Current Low Set Point \_[, L\_o]); navigate to the Operations Page and than the Current Menu to modify.

Read and monitor the real-time current level through the Current Read \( \bigcup\_{U,\sigma} \) prompt while the most recent faults can be read via the Current Error \( \bigcup\_{L\infty} \sigma \) and Heater Error \( \bigcup\_{L\infty} \sigma \) prompts. All of these prompts can be found in the Operations Page under the Current Menu.

# **Open Loop Detection**

When Open Loop Detection is enabled \( \begin{align\*} \omega\_{\begin{align\*} \begin{align\*} \ell \delta\_{\begin{align\*} \begin{align\*} \ell \delta\_{\begin{align\*} \begin{align\*} \ell \delta\_{\begin{align\*} \begin{align\*} \delta\_{\begin{align\*} \begin{align\*} \delta\_{\begin{align\*} \begin{align\*} \delta\_{\begin{align\*} \begin{align\*} \delta\_{\begin{align\*} \begin{align\*} \delta\_{\begin{align\*} \delta\_{\begin{al

### Note:

All prompts identified in this section can be found in the Loop Menu of the Setup Page.

# Programming the EZ Key/s

You can program the EZ Key either in the Setup Menu or with configuration software, such as EZ-ZONE Configurator, using a personal computer.

The following examples show how to program the EZ Key to start and stop a profile.

- To go to the Setup Page from the Home Page, press both the Up O and Down V keys for six seconds.
   R , will appear in the upper display and SEE will appear in the lower display.
- 2. Press the Up Key until Fun appears in the upper display and 5EE will appear in the lower display.
- 3. Press the Advance Key (a) until Digital Input Level (LEU) appears in the lower display. Use an arrow key to specify the state of the key (high or low) when the controller is powered up. Functions will toggle with each press of the EZ Key, such as Profile Start/Stop.
- 4. Press the Advance Key . The lower display will show Digital Function . Press the Up or Down key to scroll through the functions that can be assigned to the EZ Key

  When Profile Start/Stop P.5 appears in the upper display and . papears in the lower
  - upper display and **Fn** appears in the lower display, press the Advance Key once to select that function and move to the Function Instance **Fn** parameter.
- 5. Press the Up **②** or Down **♡** key to scroll to the profile that you want the EZ Key to control.
- 6. The instance tells the controller which of the numbered functions should be acted upon. For profiles, there are 4 instances. Press the Infinity Key ② once to return to the submenu, twice to return to the main menu or three times to return to the Home Page.

# Using Lockout to Hide Pages and Menus

If unintentional changes to parameter settings might raise safety concerns or lead to downtime, your can use the lockout feature to make them more secure.

Each of the menus in the Factory Page and each of the pages, except the Factory Page, has a security level assigned to it. You can change the read and write access to these menus and pages by using the parameters in the Lockout Menu (Factory Page).

### **Lockout Menu**

There are five parameters in the Lockout Menu (Factory Page):

• Lock Operations Page LoC. sets the security level for the Operations Page. (default: 2)

# Note:

The Home and Setup Page lockout levels are fixed and cannot be changed.

- Lock Profiling Page [Lock Profiling Page (default: 3)
- Password Security Enable [PRS,E] will turn on or off the Password security feature. (default: off)
- Read Lockout Security **LoC** determines which pages can be accessed. The user can access the selected level and all lower levels. (default: 5)
- Set Lockout Security **5***LoC* determines which parameters within accessible pages can be written to.

The user can write to the selected level and all lower levels. (default: 5)

The table below represents the various levels of lockout for the Set Lockout Security prompt and the Read Lockout Security prompt. The Set Lockout has 6 levels (0-5) of security where the Read Lockout has 5 (1-5). Therefore, level "0" applies to Set Lockout only. "Y" equates to yes (can write/read) where "N" equates to no (cannot write/read). The colored cells simply differentiate one level from the next.

| Lockout Security 510[ & rlo[ |     |     |    |   |   |   |
|------------------------------|-----|-----|----|---|---|---|
| Lockout Level                | 0   | 1   | 2  | 3 | 4 | 5 |
| Home Page                    | Y   | Y   | Y  | Y | Y | Y |
| Operations Page              | N   | N   | Y  | Y | Y | Y |
| Setup Page                   | N   | N   | N  | N | Y | Y |
| Profile Page                 | N   | N   | N  | Y | Y | Y |
| Fact                         | ory | Pag | ge |   |   |   |
| Custom Menu                  | N   | N   | N  | N | N | Y |
| Diagnostic Menu              | N   | Y   | Y  | Y | Y | Y |
| Calibration Menu             | N   | N   | N  | N | N | Y |
| Lock                         | out | Meı | nu |   |   |   |
| LoC.O                        | N   | Y   | Y  | Y | Y | Y |
| LoC.P                        | N   | Y   | Y  | Y | Y | Y |
| PR5.E                        | N   | Y   | Y  | Y | Y | Y |
| rLo[                         | Y   | Y   | Y  | Y | Y | Y |
| 5LoC                         | Y   | Y   | Y  | Y | Y | Y |

The following examples show how the Lockout Menu parameters may be used in applications:

- 1. You can lock out access to the Operations Page but allow an operator access to the Profile Menu, by changing the default Profile Page and Operations Page Lock. Change Lock Operations Page Lock. to 3 and Lock Profiling Page Lock. If Set Lockout Security 51.01 is set to 2 or higher and the Read Lockout Security relations Page and Home Pages can be accessed, and all writable parameters can be written to. Pages with security levels greater than 2 will be locked out (inaccessible).
- 2 If Set Lockout Security **5Loc** is set to 0 and Read Lockout Security **rloc** is set to 5, all pages will be accessible, however, changes will not be allowed on any pages or menus, with one exception: Set Lockout Security **5Loc** can be changed to a higher level.
- 3. The operator wants to read all the menus and not allow any parameters to be changed.

  In the Factory Page, Lockout Menu, set Read Lockout Security \( \begin{align\*} \begin{align\*} \text{Loc} \begin{align\*} \text{to 5} \text{ and Set Lockout Security } \( \begin{align\*} \begin{align\*} \begin{align\*} \begin{align\*} \text{to 0} \end{align\*} \)
- The operator wants to read and write to the Home Page and Profiling Page, and lock all other pages and menus.

In the Factory Page, Lockout Menu, set Read Lockout Security [ LoC to 2 and Set Lockout Security [ 5 LoC to 2.

In the Factory Page, Lockout Menu, set Lock Operations Page [Local] to 3 and Lock Profiling Page [Local] to 2.

5. The operator wants to read the Operations Page, Setup Page, Profiling Page, Diagnostics Menu, Lock Menu, Calibration Menu and Custom Menus. The operator also wants to read and write to the Home Page.

In the Factory Page, Lockout Menu, set Read Lockout Security  $\boxed{r \ LoC}$  to 1 and Set Lockout Security  $\boxed{5 \ LoC}$  to 5.

In the Factory Page, Lockout Menu, set Lock Operations Page LoC. to 2 and Lock Profiling Page LoC. to 3.

# **Using Password Security**

It is sometimes desirable to apply a higher level of security to the control where a limited number of menus are visible and not providing access to others without a security password. Without the appropriate password those menus will remain inaccessible. If Password Enabled [PRS.E] in the Factory Page under the Lot Menu is set to on, an overriding Password Security will be in effect. When in effect, the only Pages that a User without a password has visibility to are defined in the Locked Access Level **Loc.** prompt. On the other hand, a User with a password would have visibility restricted by the Read Lockout Security [ Lockout Security ]. As an example, with Password Enabled and the Locked Access Level [Locked] set to 1 and [rto[] is set to 3, the available Pages for a User without a password would be limited to the Home and Factory Pages (locked level 1). If the User password is entered all pages would be accessible with the exception of the Setup Page as defined by level 3 access.

### **How to Enable Password Security**

Go to the Factory Page by holding down the Infinity key and the Advance key for approximately six seconds. Once there, push the Down key one time to get to the Lat menu. Again push the Advance key until the Password Enabled [PRS.E] prompt is visible. Lastly, push either the up or down key to turn it on. Once on, 4 new prompts will appear:

- 1. [LoC,L], Locked Access Level (1 to 5) corresponding to the lockout table above.
- 2. [rolling Password will change the Customer Code every time power is cycled.
- 3. [PR5.], User Password which is needed for a User to acquire access to the control.
- 4. [<u>PR5.R</u>], Administrator Password which is needed to acquire administrative access to the control.

The Administrator can either change the User and or the Administrator password or leave them in the

default state. Once Password Security is enabled they will no longer be visible to anyone other than the Administrator. As can be seen in the formula that follows either the User or Administrator will need to know what those passwords are to acquire a higher level of access to the control. Back out of this menu by pushing the Infinity & key. Once out of the menu, the Password Security will be enabled.

### **How to Acquire Access to the Control**

To acquire access to any inaccessible Pages or Menus, go to the Factory Page and enter the **ULot** menu. Once there follow the steps below:

#### Note:

If Password Security (Password Enabled [PRS.E] is On) is enabled the two prompts mentioned below in the first step will not be visible. If unknown, call the individual or company that originally setup the control.

- 1. Acquire either the User Password [PR5.v] or the Administrator Password [PR5.R].
- 2. Push the Advance key one time where the Code **[od]** prompt will be visible.

### Note:

- a. If the the Rolling Password is off push the Advance key one more time where the Password [PR55] prompt will be displayed. Proceed to either step 7a or 8a. Pushing the Up O or Down O arrow keys enter either the User or Administrator Password. Once entered, push and hold the Infinity key for two seconds to return to the Home Page.
- b. If the Rolling Password [roll] was turned on proceed on through steps 3 9.
- 3. Assuming the Code **[odE]** prompt (Public Key) is still visible on the face of the control simply push the Advance key to proceed to the Password [**PR55**] prompt. If not find your way back to the Factory Page as described above.
- 4. Execute the calculation defined below (7b or 8b) for either the User or Administrator.
- 5. Enter the result of the calculation in the upper display play by using the Up **②** and Down **③** arrow keys or use EZ-ZONE Confgurator Software.
- 6. Exit the Factory Page by pushing and holding the Infinity © key for two seconds.

Formulas used by the User and the Administrator to calculate the Password follows:

Passwords equal:

### 7. User

- a. If Rolling Password [ roll is Off, Password [ PR55] equals User Password [ PR5.u].
- b. If Rolling Password [roll] is On, Password [PR55] equals:

  ([PR5.]] x code) Mod 929 + 70

#### 8. Administrator

- a. If Rolling Password [roll] is Off, Password [PR55] equals User Password [PR58].
- b. If Rolling Password [roll] is On, Password [PR55] equals:
  ([PR58] x code) Mod 997 + 1000

## Differences Between a User Without Password, User With Password and Administrator

- User **without** a password is restricted by the Locked Access Level \( \oldsymbol{Loc} \oldsymbol{Loc} \oldsymbol{L} \oldsymbol
- A User **with** a password is restricted by the Read Lockout Security [rto[] never having access to the Lock Menu [to[].
- An Administrator is restricted according to the Read Lockout Security [rloc] however, the Administrator has access to the Lock Menu where the Read Lockout can be changed.

# Modbus - Using Programmable Memory Blocks

When using the Modbus RTU or Modbus TCP protocols, the PM control features a block of addresses that can be configured by the user to provide direct access to a list of 40 user configured parameters. This allows the user easy access to this customized list by reading from or writing to a contiguous block of registers.

To acquire a better understanding of the tables found in the back of this manual (See Appendix: (Modbus Programmable Memory Blocks) please read through the text below which defines the column headers used.

### **Assembly Definition Addresses**

- Fixed addresses used to define the parameter that will be stored in the "Working Addresses", which may also be referred to as a pointer. The value stored in these addresses will reflect (point to) the Modbus address of a parameter within the ST control.

### **Assembly Working Addresses**

- Fixed addresses directly related to their associated "Assembly Definition Addresses" (i.e., Assembly Working Addresses 200 & 201 will assume the parameter pointed to by Assembly Definition Addresses 40 & 41).

When the Modbus address of a target parameter is stored in an "Assembly Definition Address" its corresponding working address will return that parameter's actual value. If it's a writable parameter, writing to its working register will change the parameter's actual value.

As an example, Modbus register 360 contains the Analog Input 1 Process Value (See Operations Page, Analog Input Menu). If the value 360 is loaded into Assembly Definition Address 91, the process value sensed by analog input 1 will also be stored in Modbus registers 250 and 251. Note that by default this parameter is also stored in working registers 240 and 241 as well.

The table (See Appendix: Modbus Programmable Memory Blocks) identified as "Assembly Definition Addresses and Assembly Working Addresses" reflects the assemblies and their associated addresses.

# **CIP - Communications Capabilities**

With the introduction of CIP a user can now collect data, configure a device and control industrial devices. CIP is an open protocol at the application layer fully managed by the Open DeviceNet Vendors Association (ODVA, <a href="http://www.odva.org">http://www.odva.org</a>). Being that this is an open protocol there are many independent vendors offering a wide array of devices to the end user. CIP provides the ability to communicate utilizing both implicit messaging (real-time I/O messaging), and explicit messaging (information/configuration messaging). For implicit communications using a PLC, simply configure the PM assembly size into the I/O structure of the PLC (See: CIP Implicit Assemblie Structures). The assembly structures can also be changed by the user.

Explicit communications requires the use of specific addressing information. DeviceNet requires that the node address be specified where EtherNet/IP requires just the Class, Instance and Attribute.

- Node address or MAC ID (0 63, DeviceNet only)
- Class ID (1 to 255)
- Instance ID (0 to 255)
- Attribute ID (1 to 255)

EtherNet/IP and DeviceNet are both based on CIP and use the same addressing scheme. In the following menu pages notice the column header identified as CIP. There you will find the Class, Instance and Attribute in hexadecimal, (decimal in parenthesis) which makes up the addressing for both protocols. The Watlow implementation of CIP does not support connected explicit messages but fully supports unconnected explicit messaging.

Rockwell Automation (RA) developed the DF1 serial protocol within the framework of the PCCC application protocol. With the introduction of CIP, the PCCC protocol was encapsulated within it to enable continued communication over Ethernet to the legacy RA programmable controllers, e.g., SLC, Micrologic and PLC-5 controllers equipped with Ethernet capabilities. The Watlow implementation of CIP also supports the PCCC protocol.

EtherNet/IP (Industrial Protocol) is a network communication standard capable of handling large amounts of data at speeds of 10 Mbps or 100 Mbps, and at up to 1,500 bytes per packet. It makes use of standard off-the-shelf Ethernet chip sets and the currently installed physical media (hardware connections). DeviceNet was the first field bus offering of the ODVA group and has been around for many

years. DeviceNet can communicate at 125, 250 and 500 kilobytes per second with a maximum limitation of 64 nodes (0 to 63) on the network.

### Note:

If the control is brought back to the factory defaults the user configured assemblies will be overwritten.

### Note:

The maximum number of implicit input/output members using *DeviceNet* is 200. When using EtherNet/IP the maximum is 100.

### **CIP Implicit Assemblies**

Communications using CIP (EtherNet/IP and DeviceNet) can be accomplished with any PM Integrated control equipped with either DeviceNet or EtherNet/IP communications cards. As was already mentioned, reading or writing when using CIP can be accomplished via explicit and or implicit communications. Explicit communications are usually executed via a message instruction within the PLC but there are other ways to do this as well outside of the focus of this document.

Implicit communications is also commonly referred to as polled communications. When using implicit communications there is an I/O assembly that would be read or written to. The default assemblies and the assembly size is embedded into the firmware of the PM control. Watlow refers to these assemblies as the T to O (Target to Originator) and the O to T (Originator to Target) assemblies where the Target is always the EZ-ZONE PM controller and the Originator is the PLC or master on the network. The size of the O to T assembly is fixed at 20 (32-bit) members where the T to O assembly consists of 21 (32-bit) members. All assembly members are user configurable with the exception of the first T to O member. The first member of the T to O assembly is called the Device Status, it is unique and cannot be changed. If the module has been properly configured when viewing this 32-bit member in binary format bits 12 and 16 should always be set to 1 where all of the other bits should be 0. The 20 members that follow Device Status are user configurable. The Appendix of this User's Guide contains the PM implicit assemblies (See Appendix: CIP Implicit Assembly Structures).

## **Compact Assembly Class**

Along with the standard implicit assembly where each module parameter (member) occupies one 32-bit assembly location there is also a Compact Class assembly. The need for the Compact Class assembly members became apparent as the number of member instances grew with the EZ-ZONE family of controls. Because there is a limited number of implicit assembly members (20 input, 20 output), the Compact Class enables the user to modify the standard assembly offering to their liking while also achieving much better utilization of each bit within the 32-bit member. As an example, if a standard Implicit Assembly member were configured to monitor Alarm State 1 the entire 32-bit member would be consumed

where just 7 bits out of the 32 will be used to reflect: Startup (88), None (61), Blocked (12), Alarm Low (8), Alarm High (7) or Error (28) for Alarm 1 only. With Compact Class assembly member 12 (identified in this document as "12 A Alarm Read") in use, the alarm states of all 4 alarms can be placed in one 32-bit assembly member using just 2 bits for each state. Bits 0 and 1 would represent Alarm State 1, bits 2 and 3 Alarm State 2, etc... Each pair of 2 bits can represent the following states: 00 = None, 01 = Alarm Low, 10 = Alarm High and 11 = Other. There is a variety of predefined Compact Class members that can be used (See Appendix: Compact Class Assembly Structure) to modify the default implicit assemblies.

#### Note:

As is the case with any available parameter within the PM control the Compact Class members can also be read or written to individually via an explicit message as well.

### **Modifying Implicit Assembly Members**

To change any given member of either assembly (T to O or O to T) simply write the new class, instance and attribute (CIA) to the member location of choice. As an example, if it were desired to change the 14<sup>th</sup> member of the T to O assembly from the default parameter (Cool Power) to the Compact Class 12<sup>th</sup> member (See Appendix: Compact Class Assembly Structure) write the value of 0x71, 0x01 and 0x0C (Class, Instance and Attribute respectively) to 0x77, 0x02 and 0x0D. Once the change is executed, reading this member location (as was discussed above) will return the Alarm States (1-4) to paired bits 0 through 7 where 00 = None, 01 = Alarm Low, 10 = Alarm High and 11 = Other.

The CIP communications instance will always be instance 2.

# **Profibus DP - (Decentralized Peripherals)**

This protocol is typically used to operate sensors and actuators via a centralized controller within industrialized production topologies. Data rates up to 12 Mbit/s on twisted pair cables and/or fiber optics are possible. This protocol is available in three functionally graded version; DP-V0, DP-V1 and DP-V2. It should be noted that Watlow products utilizing this protocol support DP-V0 and DP-V1 only.

DP-V0 - provides the basic functionality of DP, including cyclic data exchange, station, module and channel specific diagnostics and four different interrupt types for diagnostics and process interrupts.

Cyclic Data refers to input/output data that is preconfigured to pass from the Profibus-DP Class 1 Master and the Slave at a known rate. Cyclic data is expected on both the sender and the receiver end of the message.

### Note:

To use DP-V0 (cyclic data transfer) first configure

and then register the General Station Description (GSD) file. Watlow provides a software tool allowing for total customization of the data to be read and or written to. Acquire this software tool (Profibus GSD Editor) via the CD that shipped with the product or, as an alternative, point your browser to: http://www.watlow.com/products/controllers/software.cfm and navigate to the bottom of the page and click on "Software and Demos" to download the software.

Using the GSD Editor a user can configure up to a maximum of 135 different parameters that can be read or written to from Zone 1 through 16.

DP-V1 - contains enhancements geared towards process automation, in particular acyclic data communication for parameter assignment, operation, visualization and interrupt control of intelligent field devices, in conjunction with cyclic user data communication.

Acyclic Data is a message that can be sent and or received at any time where they typically have a lower priority then cyclic messages. This type of messaging is typically used for the purpose of configuration or performing some sort of a diagnostic function.

# **Software Configuration**

# Using EZ-ZONE® Configurator Software

To enable a user to configure the PM control using a personal computer (PC), Watlow has provided free software for your use. If you have not yet obtained a copy of this software insert the CD (Controller Support Tools) into your CD drive and install the software. Alternatively, if you are viewing this document electronically and have a connection to the internet simply click on the link below and download the software from the Watlow web site free of charge.

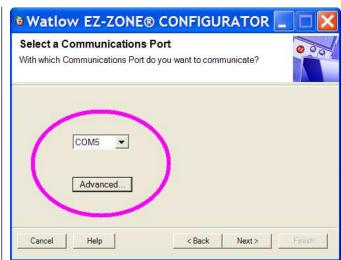
http://www.watlow.com/products/software/zone config.cfm

Once the software is installed double click on the EZ-ZONE Configurator icon placed on your desktop during the installation process. If you cannot find the icon follow the steps below to run the software:

- 1. Move your mouse to the "Start" button
- 2. Place the mouse over "All Programs"
- 3. Navigate to the "Watlow" folder and then the subfolder "EZ-ZONE Configurator"
- 4. Click on EZ-ZONE Configurator to run.

The first screen that will appear is shown below.

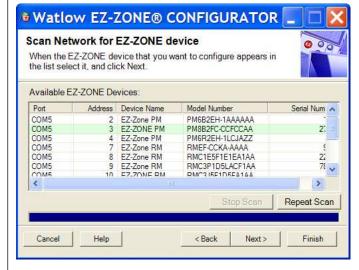



If the PC is already physically connected to the EZ-ZONE PM control click the next button to go on-line.

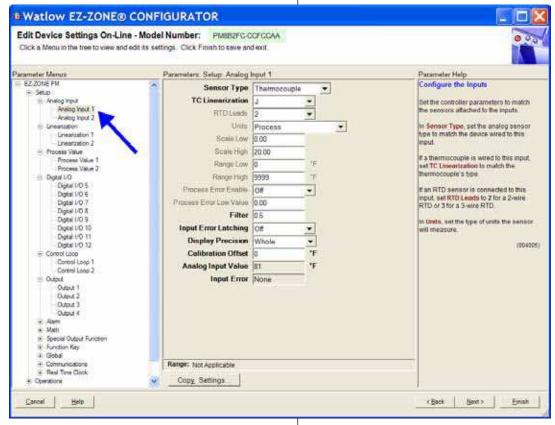
### Note:

When establishing communications from PC to the EZ-ZONE PM control an interface converter will be required. The Standard Bus network uses EIA-485 as the interface. Most PCs today would require a USB to EIA-485 converter. However, some PCs may still be equipped with EIA-232 ports, therefore an EIA-232 to EIA-485 converter would be required.

As can be seen in the above screen shot the software provides the user with the option of downloading a previously saved configuration as well as the ability to create a configuration off-line to download later. The screen shots that follow will take the user online.


After clicking the next button above it is necessary to define the communications port on the PC to use.




The available options allow the user to select "Try them all" or to use a specific known communications port. After installation of your converter if you are not sure which communications port was allocated select "Try them all" and then click next. The screen to follow shows that the software is scanning for devices on the network and that progress is being made.



When complete the software will display all of the available devices found on the network as shown below.



In the previous screen shot the PM is shown highlighted to bring greater clarity to the control in focus. Any EZ-ZONE device on the network will appear in this window and would be available for the purpose of configuration or monitoring. After clicking on the control of choice simply click the next button once again. The next screen appears below. In the screen Once the focus is brought to an individual parameter (single click of mouse) as is the case for Analog Input 1 in the left column, all that can be setup related to that parameter will appear in the center column. The grayed out fields in the center column simply mean that this does not apply for the type of sensor selected. As an example, notice that when a thermocouple



shot above notice that the device part number is clearly displayed at the top of the page (green highlight added for emphasis). When multiple EZ-ZONE devices are on the network it is important that the part number be noted prior to configuring so as to avoid making unwanted configuration changes to another control.

Looking closely at the left hand column (Parameter Menus) notice that it displays all of the available menus and associated parameters within the control. The menu structure as laid out within this software follows:

- Setup
- Operations
- Factory
- Profile

Navigating from one menu to the next is easy and clearly visible. Simply slide the scroll bar up or down to display the menu and parameter of choice. If there is a need to bring greater focus and clarity to the parameters of interest simply click on the negative symbol next to any of the Menu items. As an example if it is desired to work withing the operations page click the negative sign next to Setup where the Setup Page will then collapse. Now click the plus sign next to Operations to find the menu items of choice without viewing unwanted menus and parameters. Watlow EZ-ZONE® PM Integrated Controller

is selected, RTD Leads does not apply and is therefore grayed out. To speed up the process of configuration notice that at the bottom of the center column there is an option to copy settings. If Analog Input 1 and 2 are the same type of sensor click on "Copy Settings" where a copy dialog box will appear allowing for quick duplication of all settings. Notice too, that by clicking on any of those items in the center column that context sensitive help will appear for that particular item in the right hand column. Lastly, when the configuration is complete click the "Finish" button at the bottom right of the previous screen shot. The screen that follows this action can be seen below.

Although the PM control now contains the configu-



ration (because the previous discussion focused on doing the configuration on-line) it is suggested that after the configuration process is completed that the user save this file on the PC for future use. If for some reason someone inadvertently changed a setting without understanding the impact, it would be easy and perhaps faster to download a saved configuration back to the control versus trying to figure out what was changed. Of course, there is an option to exit without saving a copy to the local hard drive. After selecting Save above click the "Finish" button once again. The screen below will than appear. When saving the configuration note the location where the



file will be placed (Saved in) and enter the file name (File name) as well. The default path for saved files follows:

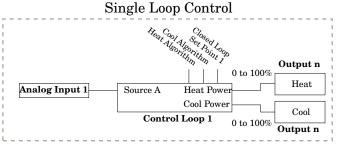
\My Documents\Watlow\EZ-Zone Configurator\ Saved Configurations

The user can save the file to any folder of choice.

# **Chapter 10: Applications**

With the release of version 7.00 firmware several new functions were added to the EZ-ZONE PM family of controls. This chapter contains some sample applications using these new functions.

# Example 1: Single Loop Control


### Requirements:

One input is required and at least one output adjusts the controlled part of the process.

### Overview:

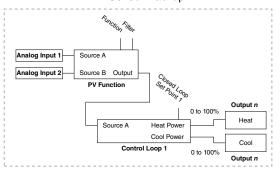
Controls one process value to a user entered Closed Loop Set Point based on an control algorithm.

Control loop 1 will control Analog Input 1 to Closed



### Loop Set Point 1.

## Example 2: Sensor Backup


### Requirements:

Two analog inputs and the enhanced software option are required and at least one output adjusts the controlled part of the process.

### Overview:

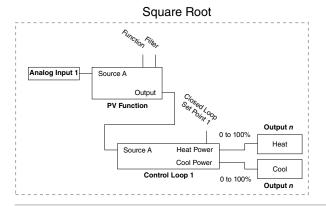
The Sensor Backup feature controls a process based on a primary sensor on Analog Input 1. If this sensor fails, then the process is controlled based on the secondary sensor on Analog Input 2.

When function is set for Sensor Backup, the PV Function output equals Source A if sensor of Analog Input 1
Sensor Backup



reading is valid or Source B if sensor reading is invalid. Control loop 1 will control the valid Analog Input sensor to Closed Loop Set Point 1.

# Example 3: Square Root


### Requirements:

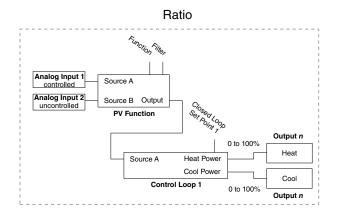
One analog input and the enhanced software option are required and at least one output adjusts the controlled part of the process.

### Overview:

Calculates the square root value of the sensor connected to Analog Input 1.

When function is set for Square Root, the PV Function output equals square root value of Source A. Control loop 1 will control Analog Input 1 to Closed Loop Set Point 1.




### Example 4: Ratio

### Requirements:

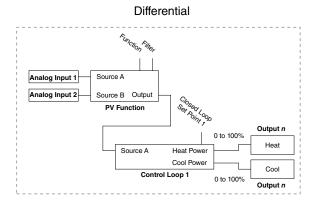
Two analog inputs and the enhanced software option are required and at least one output adjusts the controlled part of the process.

### Overview:

The Ratio feature allows control of one process as a ratio of another process. This is especially useful in applications that mix two materials, whether steam, paint or food ingredients. Analog Input 1 monitors the controlled part of the process. Analog Input 2 of the controller measures the part of the process that is either uncontrolled or controlled by another device. The part of the process controlled will be maintained at a level equal to the quantity measured at input 2 multiplied by the ratio term set by the user as Closed Set Point 1.



When function is set for Ratio, the PV Function output equals Source A as a ratio to Source B. Control loop 1 will control Analog Input 1 to Closed Loop Set Point 1.


# Example 5: Differential

### Requirements:

Two analog inputs and the enhanced software option are required and at least one output adjusts the controlled part of the process.

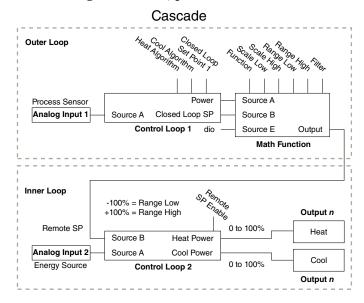
### Overview:

Differential control maintains one process at a difference to another process.



When function is set for Differential, the PV Function output equals Source A minus Source B. Control loop 1 will control Analog Input 1 difference to Analog Input 2 based on Closed Loop Set Point 1.

### Example 6: Cascade


### Requirements:

Two inputs and the enhanced software option are required and at least one output adjusts the controlled part of the process.

### Overview:

Cascade control can handle a difficult process with minimal overshoot, while reaching the set point quickly. This minimizes damage to system components and allows for over sizing heaters for optimal heat-up rates. Heater life is also extended by reducing thermal cycling of the heater. Systems with long lag times between the energy source (heater, steam, etc.) and the measured process value cannot be controlled accurately

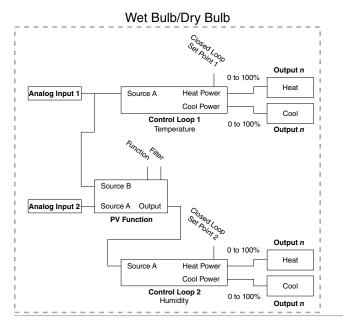
or efficiently with a single control loop, because a lot of energy can build up before a response is detected. This can cause the system to overshoot the set point, which could damage the heater, product or heat transfer me-



dium, such as a heat transfer fluid.

When function is set for Process or Deviation Scale, the Math Function output equals Source A scaled by Range Low and Range High when Source E is False. Source E disables cascade when True and Math Function output equals Control Loop 1- Closed Loop Set Point. Control Loop 1 will control Analog Input 1 to Closed Loop 1 Set Point and produce a remote set point to Control Loop 2 based on the math scaling. Control Loop 2 will control Analog Input 2 to the scaled value from the Math Function interpreted as a remote set point..

## Example 7: Wet Bulb / Dry Bulb


### Requirements:

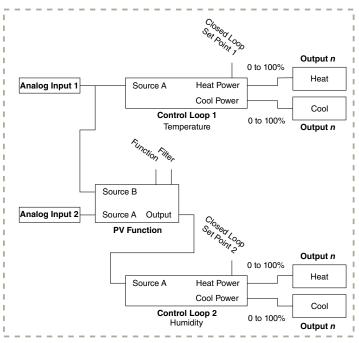
Two analog inputs and the enhanced software option are required and at least and at least outputs adjusts the controlled part of the processes.

### Overview:

Wet Bulb/Dry Bulb is a configuration where a dry bulb connected to Analog Input 1 measures temperature on Analog Input 1. A wet bulb sensor that is maintained with moisture has air moved over the sensor. As moisture evaporates from the wet bulb, the temperature drops. A wet bulb input on Analog Input 2, in combination with the dry bulb temperature, senses relative humidity. The controller calculates the temperature difference between the two sensors to determine percent relative humidity. The humidify and dehumidify outputs are disabled when Analog Input 1 temperature falls below 32 F/O C, or goes above 212 F/100 C.

When function is set for Wet Bulb/Dry Bulb, the PV Function output equals calculated humidity. Control loop 1 will control Analog Input 1 to Closed Loop Set Point 1. Control loop 2 will control Analog Input 2 to Closed Loop Set Point 2.




Example 8: Vaisala

### Requirements:

Two analog inputs and the enhanced software option are required and at least two outputs adjusts the controlled temperature and humidity processes.

### Overview:

Vaisala Model HMM-30C Solid-state Relative Humidity Sensor is supported with the Vaisala configuration. Analog Input 1 is used to measure temperature and Analog Input 2 must be a process input connected to a Vaisala sensor. The controller provides temperature compensation for the Vaisala sensor. The humidify and dehumidify outputs are disabled when Analog Input 1 temperature falls below -40 F/- 40 C, or goes above 320 F/160 C. When function is set for Vaisala, the PV Function output equals the calculated relative humidity compensated by the sensor on Analog Input 1.



# **Example 9: Motorized Valve Control**

A typical scenario where a motorized valve is used is to regulate the flow of fluid which in turn impacts the loop process value. A valve is opend or closed by closing contacts to drive the value in the intended direction. Motorized Valves come in a number of configurations.

Some valves have a position feedback mechanism that allows the control to measure the valve's position via an internal potentiometer called slide-wire. The controller can measure the potentiometer resistance to determine the initial valve position on power up.

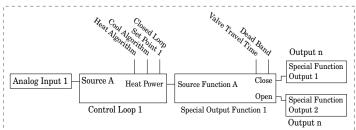
This method may not be desirable for three reasons:

- 1) It requires a second input on the controller to measure valve position.
- 2) The controller and the valve are more expensive.
- 3) Additional wiring is required for the slide-wire feed back.

Other valves take an analog signal and have a localized control mechanism that regulates the valve position. These are typically more expensive valves because of the control mechanism built-in plus it requires an analog signal which is not always available. The actual valve position is not critical because it is a part of a closed loop control.

The Motorized Valve control algorithm is designed to work with another type of valve. This algorithm provides two discrete signals: one to open the valve and another to close the valve. The algorithm turns on/off the appropriate signal for an appropriate amount of time to approximate the valve position. This works when the valve is inside a closed control loop because when the valve is not in the correct position, the PID algorithm will adjust the valve further open or close as needed. These valves have travel limit switches which deactivates the motor once the valve is fully open or fully closed so the controller can not cause the valve to over travel and burn out the motor, or the motor is built so it can not overheat at max locked rotor amperes.

To use the motorized feature, the user programs the Special Output Function to Motorized Valve. Then the Source Function A is selected to either Heat or Cool Power and Source Instance A is set to match the control loop, typically 1.


Next the user enters the amount of time in seconds that the valve requires power to go from a closed state to an open state. The user enters the dead band in percent PID power to prevent the valve from excessive cycling. Larger numbers reduce activity on the valve and smaller numbers improve controllability. Select a value that compromises on these two competing goals.

Lastly, assign an output to Special Output Function 1 that is wired to close the valve. Assign an output to Special Output Function 2 that is wired to open the valve. Typically, these two outputs are normally open mechanical relays but solid state relays or switch DC outputs may be programmed in the same manner.

### **Definitions:**

- *Current Position* is an approximation of the valve's position as it relates to a power level (0 100%) where 0% is fully closed and 100% is fully open.
- Dead Time is the minimum on time that the valve will travel once it is turned on in either the closed or open direction. Dead Time = Valve Dead Band / 100 \* Valve Travel Time.
- On Time is the amount of time the valve needs to be turned on (either open or close) to eliminate the error between the estimated valve position and the desired power level. A positive On Time value indicates the need to open the valve while a negative value indicates the need to close the valve. On Time = (Input 1 Value Current Position) / 100 \* Valve Travel Time When power is applied to the controller, the valve is closed and time is set to 0.
- *Special Output Function 1* is the close signal to the valve.
- Special Output Function 2 is the open signal to the valve

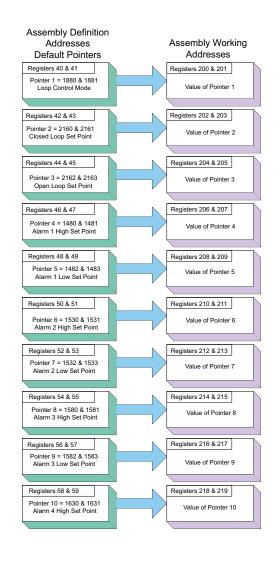
### Motorized Valve Control

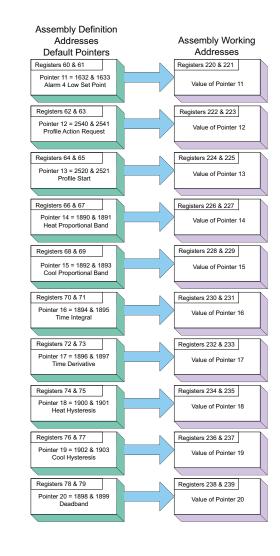


# **Chapter 11: Appendix**

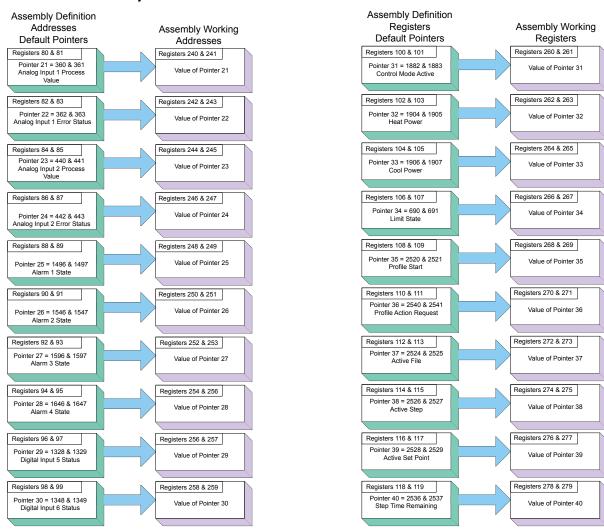
# **Troubleshooting Alarms, Errors and Control Issues**

| Indication                           | Description                                                                           | Possible Cause(s)                                                                                                                                                                                                                                                                                              | Corrective Action                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm won't clear or reset           | Alarm will not clear or reset<br>with keypad or digital input                         | <ul> <li>Alarm latching is active</li> <li>Alarm set to incorrect output</li> <li>Alarm is set to incorrect source</li> <li>Sensor input is out of alarm set point range</li> <li>Alarm set point is incorrect</li> <li>Alarm is set to incorrect type</li> <li>Digital input function is incorrect</li> </ul> | Reset alarm when process is within range or disable latching Set output to correct alarm source instance Set alarm source to correct input instance Correct cause of sensor input out of alarm range Set alarm set point to correct trip point Set alarm to correct type: process, deviation or power Set digital input function and source instance |
| Alarm won't occur                    | Alarm will not activate output                                                        | <ul> <li>Alarm silencing is active</li> <li>Alarm blocking is active</li> <li>Alarm is set to incorrect output</li> <li>Alarm is set to incorrect source</li> <li>Alarm set point is incorrect</li> <li>Alarm is set to incorrect type</li> </ul>                                                              | <ul> <li>Disable alarm silencing, if required</li> <li>Disable alarm blocking, if required</li> <li>Set output to correct alarm source instance</li> <li>Set alarm source to correct input instance</li> <li>Set alarm set point to correct trip point</li> <li>Set alarm to correct type: process, deviation or power</li> </ul>                    |
| ALEI Alarm Error ALEI ALEI ALEI ALEI | Alarm state cannot be determined due to lack of sensor input                          | Sensor improperly wired or open     Incorrect setting of sensor type     Calibration corrupt                                                                                                                                                                                                                   | Correct wiring or replace sensor     Match setting to sensor used     Check calibration of controller                                                                                                                                                                                                                                                |
| RLL I Alarm Low RLL 2 RLL 3 RLL 4    | Sensor input below low alarm set point                                                | Temperature is less than alarm set point     Alarm is set to latching and an alarm occurred in the past     Incorrect alarm set point     Incorrect alarm source                                                                                                                                               | <ul> <li>Check cause of under temperature</li> <li>Clear latched alarm</li> <li>Establish correct alarm set point</li> <li>Set alarm source to proper setting</li> </ul>                                                                                                                                                                             |
| RLh I Alarm High RLh2 RLh3 RLh4      | Sensor input above high<br>alarm set point                                            | <ul> <li>Temperature is greater than alarm set point</li> <li>Alarm is set to latching and an alarm occurred in the past</li> <li>Incorrect alarm set point</li> <li>Incorrect alarm source</li> </ul>                                                                                                         | <ul> <li>Check cause of over temperature</li> <li>Clear latched alarm</li> <li>Establish correct alarm set point</li> <li>Set alarm source to proper setting</li> </ul>                                                                                                                                                                              |
| Er. 1 Error Input                    | Sensor does not provide a valid signal to controller                                  | <ul> <li>Sensor improperly wired or open</li> <li>Incorrect setting of sensor type</li> <li>Calibration corrupt</li> </ul>                                                                                                                                                                                     | <ul> <li>Correct wiring or replace sensor</li> <li>Match setting to sensor used</li> <li>Check calibration of controller</li> </ul>                                                                                                                                                                                                                  |
| Limit won't clear or<br>reset        | Limit will not clear or reset<br>with keypad or digital input                         | Sensor input is out of limit set point range     Limit set point is incorrect     Digital input function is incorrect                                                                                                                                                                                          | Correct cause of sensor input out of limit range     Set limit set point to correct trip point     Set digital input function and source instance                                                                                                                                                                                                    |
| L.E.I Limit Error                    | Limit state cannot be deter-<br>mined due to lack of sensor<br>input, limit will trip | <ul> <li>Sensor improperly wired or open</li> <li>Incorrect setting of sensor type</li> <li>Calibration corrupt</li> </ul>                                                                                                                                                                                     | Correct wiring or replace sensor     Match setting to sensor used     Check calibration of controller                                                                                                                                                                                                                                                |
| L_L Limit Low                        | Sensor input below low limit<br>set point                                             | <ul> <li>Temperature is less than limit set point</li> <li>Limit outputs latch and require reset</li> <li>Incorrect alarm set point</li> </ul>                                                                                                                                                                 | <ul> <li>Check cause of under temperature</li> <li>Clear limit</li> <li>Establish correct limit set point</li> </ul>                                                                                                                                                                                                                                 |
| Luh I Limit High                     | Sensor input above high limit<br>set point                                            | <ul> <li>Temperature is greater than limit set point</li> <li>Limit outputs latch and require reset</li> <li>Incorrect alarm set point</li> </ul>                                                                                                                                                              | Check cause of over temperature     Clear limit     Establish correct limit set point                                                                                                                                                                                                                                                                |


| Indication                                | Description                                                                                                                                                                            | Possible Cause(s)                                                                                                                                                                                                                                                                                                | Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LP.o.1<br>LP.o.2<br>Loop Open Error       | Open Loop Detect is active<br>and the process value did<br>not deviate by a user-select-<br>ed value in a user specified<br>period with PID power at<br>100%.                          | <ul> <li>Setting of Open Loop Detect Time incorrect</li> <li>Setting of Open Loop Detect Deviation incorrect</li> <li>Thermal loop is open</li> <li>Open Loop Detect function not re-</li> </ul>                                                                                                                 | Set correct Open Loop Detect Time for application     Set correct Open Loop Deviation value for application     Determine cause of open thermal loop: misplaced sensors, load failure, loss of power to load, etc.     Deactivate Open Loop Detect feature                                                                                                                                                                                                                  |
|                                           |                                                                                                                                                                                        | quired but activated                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LP. I<br>LP. 2<br>Loop Reversed Error     | Open Loop Detect is active<br>and the process value is<br>headed in the wrong direc-<br>tion when the output is<br>activated based on devia-<br>tion value and user-selected<br>value. | <ul> <li>Setting of Open Loop Detect Time incorrect</li> <li>Setting of Open Loop Detect Deviation incorrect</li> <li>Output programmed for incorrect function</li> <li>Thermocouple sensor wired in reverse polarity</li> </ul>                                                                                 | <ul> <li>Set correct Open Loop Detect Time for application</li> <li>Set correct Open Loop Deviation value for application</li> <li>Set output function correctly</li> <li>Wire thermocouple correctly, (red wire is negative)</li> </ul>                                                                                                                                                                                                                                    |
| Ramping 1 Ramping 2                       | Controller is ramping to new set point                                                                                                                                                 | Ramping feature is activated                                                                                                                                                                                                                                                                                     | Disable ramping feature if not required                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EUNI Autotuning 1<br>EUNZ Autotuning 2    | Controller is autotuning the control loop                                                                                                                                              | User started the autotune function     Digital input is set to start autotune                                                                                                                                                                                                                                    | Wait until autotune completes or disable autotune feature     Set digital input to function other than autotune, if desired                                                                                                                                                                                                                                                                                                                                                 |
| No heat/cool action                       | Output does not activate load                                                                                                                                                          | <ul> <li>Output function is incorrectly set</li> <li>Control mode is incorrectly set</li> <li>Output is incorrectly wired</li> <li>Load, power or fuse is open</li> <li>Control set point is incorrect</li> <li>Incorrect controller model for application</li> </ul>                                            | <ul> <li>Set output function correctly</li> <li>Set control mode appropriately (Open vs Closed Loop)</li> <li>Correct output wiring</li> <li>Correct fault in system</li> <li>Set control set point in appropriate control mode and check source of set point: remote, idle, profile, closed loop, open loop</li> <li>Obtain correct controller model for application</li> </ul>                                                                                            |
| No Display                                | No display indication or LED illumination                                                                                                                                              | Power to controller is off Fuse open Breaker tripped Safety interlock switch open Separate system limit control activated Wiring error Incorrect voltage to controller                                                                                                                                           | <ul> <li>Turn on power</li> <li>Replace fuse</li> <li>Reset breaker</li> <li>Close interlock switch</li> <li>Reset limit</li> <li>Correct wiring issue</li> <li>Apply correct voltage, check part number</li> </ul>                                                                                                                                                                                                                                                         |
| No Serial Communication                   | Cannot establish serial communications with the controller                                                                                                                             | Address parameter incorrect     Incorrect protocol selected     Baud rate incorrect     Parity incorrect     Wiring error     EIA-485 converter issue     Incorrect computer or PLC communications port     Incorrect software setup     Wires routed with power cables     Termination resistor may be required | <ul> <li>Set unique addresses on network</li> <li>Match protocol between devices</li> <li>Match baud rate between devices</li> <li>Match parity between devices</li> <li>Correct wiring issue</li> <li>Check settings or replace converter</li> <li>Set correct communication port</li> <li>Correct software setup to match controller</li> <li>Route communications wires away from power wires</li> <li>Place 120 Ω resistor across EIA-485 on last controller</li> </ul> |
| Process doesn't con-<br>trol to set point | Process is unstable or never reaches set point                                                                                                                                         | Controller not tuned correctly                                                                                                                                                                                                                                                                                   | Perform autotune or manually tune system                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           |                                                                                                                                                                                        | • Control mode is incorrectly set                                                                                                                                                                                                                                                                                | • Set control mode appropriately (Open vs Closed Loop)                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                           |                                                                                                                                                                                        | • Control set point is incorrect                                                                                                                                                                                                                                                                                 | • Set control set point in appropriate control mode and check source of set point: remote, idle, profile, closed loop, open loop                                                                                                                                                                                                                                                                                                                                            |


| Indication          | Description                                                                         | Possible Cause(s)                                        | Corrective Action                                                                                                             |
|---------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Temperature runway  | Process value continues to increase or decrease past set point.                     | Controller output incorrectly programmed                 | Verify output function is correct (heat<br>or cool)                                                                           |
|                     |                                                                                     | • Thermocouple reverse wired                             | • Correct sensor wiring (red wire negative)                                                                                   |
|                     |                                                                                     | Controller output wired incorrectly                      | Verify and correct wiring                                                                                                     |
|                     |                                                                                     | • Short in heater                                        | • Replace heater                                                                                                              |
|                     |                                                                                     | Power controller connection to con-<br>troller defective | • Replace or repair power controller                                                                                          |
|                     |                                                                                     | Controller output defective                              | Replace or repair controller                                                                                                  |
| Device Error        | Controller displays internal<br>malfunction message at<br>power up.                 | Controller defective     Sensor input over driven        | Replace or repair controller     Check sensors for ground loops, reverse wiring or out of range values.                       |
| h.Er Heater Error   | Heater Error                                                                        | • Current through load is above current trip set point   | • Check that the load current is proper.<br>Correct cause of overcurrent and/or ensure current trip set point is correct.     |
|                     |                                                                                     | Current through load is below current<br>trip set point  | • Check that the load current is proper.<br>Correct cause of undercurrent and/or<br>ensure current trip set point is correct. |
| Current Error       | Load current incorrect.                                                             | • Shorted solid-state or mechanical relay                | • Replace relay                                                                                                               |
|                     |                                                                                     | Open solid-state or mechanical relay                     | • Replace relay                                                                                                               |
|                     |                                                                                     | Current transformer load wire associated to wrong output | • Route load wire through current transformer from correct output, and go to the                                              |
|                     |                                                                                     | • Defective current transformer or controller            | • Replace or repair sensor or controller                                                                                      |
|                     |                                                                                     | Noisy electrical lines                                   | Route wires appropriately, check for<br>loose connections, add line filters                                                   |
| Menus inaccessible  | Unable to access 5££, [P£r], F££9] or Prof menus or particular prompts in Home Page | Security set to incorrect level                          | <ul> <li>Check Lol settings in Factory Page</li> <li>Enter appropriate password in [IILol] setting in Factory Page</li> </ul> |
|                     |                                                                                     | Digital input set to lockout keypad                      | Change state of digital input                                                                                                 |
|                     |                                                                                     | Custom parameters incorrect                              | • Change custom parameters in Factory<br>Page                                                                                 |
| EZ-Key/s don't work | EZ-Key/s does not activate required function                                        | • EZ-Key function incorrect                              | Verify EZ-Key function in Setup Menu                                                                                          |
|                     |                                                                                     | EZ-Key function instance not incor-<br>rect              | • Check that the function instance is correct                                                                                 |
|                     |                                                                                     | Keypad malfunction                                       | • Replace or repair controller                                                                                                |
| Value to low        | Value to low to be displayed<br>in 4 digit LED display                              | • Incorrect setup                                        | Check scaling of source data                                                                                                  |
| Value to high       | Value to high to be displayed<br>in 4 digit LED display                             | • Incorrect setup                                        | Check scaling of source data                                                                                                  |

# **Modbus - Programmable Memory Blocks**


**Assembly Definition Addresses and Assembly Working Addresses** 

| Assembly Definition<br>Addresses | Assembly Working<br>Addresses | Assembly Definition<br>Addresses | Assembly Working<br>Addresses |
|----------------------------------|-------------------------------|----------------------------------|-------------------------------|
| 40 & 41                          | 200 & 201                     | 80 & 81                          | 240 & 241                     |
| 42 & 43                          | 202 & 203                     | 82 & 83                          | 242 & 243                     |
| 44 & 45                          | 204 & 205                     | 84 & 85                          | 244 & 245                     |
| 46 & 47                          | 206 & 207                     | 86 & 87                          | 246 & 247                     |
| 48 & 49                          | 208 & 209                     | 88 & 89                          | 248 & 249                     |
| 50 & 51                          | 210 & 211                     | 90 & 91                          | 250 & 251                     |
| 52 & 53                          | 212 & 213                     | 92 & 93                          | 252 & 253                     |
| 54 & 55                          | 214 & 215                     | 94 & 95                          | 254 & 255                     |
| 56 & 57                          | 216 & 217                     | 96 & 97                          | 256 & 257                     |
| 58 & 59                          | 218 & 219                     | 98 & 99                          | 256 & 259                     |
| 60 & 61                          | 220 & 221                     | 100 & 101                        | 260 & 261                     |
| 62 & 63                          | 222 & 223                     | 102 & 103                        | 262 & 263                     |
| 64 & 65                          | 224 & 225                     | 104 & 105                        | 264 & 265                     |
| 66 & 67                          | 226 & 227                     | 106 & 107                        | 266 & 267                     |
| 68 & 69                          | 228 & 229                     | 108 & 109                        | 268 & 269                     |
| 70 & 71                          | 230 & 231                     | 110 & 111                        | 270 & 271                     |
| 72 & 73                          | 232 & 233                     | 112 & 113                        | 272 & 273                     |
| 74 & 75                          | 234 & 235                     | 114 & 115                        | 274 & 275                     |
| 76 & 77                          | 236 & 237                     | 116 & 117                        | 276 & 277                     |
| 78 & 79                          | 238 & 239                     | 118 & 119                        | 278 & 279                     |





## **Modbus Default Assembly Structure 80-119**



# **CIP Implicit Assembly Structures**

CIP Implicit O to T (Originator to Target) Assembly Structure

|                     |                                               | Origi           | CIP Implicit Assembly nator (Master) to Target (PM) |                                             |                  |
|---------------------|-----------------------------------------------|-----------------|-----------------------------------------------------|---------------------------------------------|------------------|
| Assembly<br>Members | PM Assembly<br>Class, Instance,<br>Attritbute | PM<br>Data Type | Parameter                                           | Parameter<br>Class, Instance,<br>Attritbute | PLC<br>Data Type |
| 1                   | 0x77, 0x01, 0x01                              | DINT            | Loop Control Mode                                   | 0x97, 0x01, 0x01                            | DINT             |
| 2                   | 0x77, 0x01, 0x02                              | DINT            | Closed Loop Set Point                               | 0x6B, 0x01, 0x01                            | REAL             |
| 3                   | 0x77, 0x01, 0x03                              | DINT            | Open Loop Set Point                                 | 0x6B, 0x01, 0x02                            | REAL             |
| 4                   | 0x77, 0x01, 0x04                              | DINT            | Alarm 1 - Alarm High Set Point                      | 0x6D, 0x01, 0x01                            | REAL             |
| 5                   | 0x77, 0x01, 0x05                              | DINT            | Alarm 1 - Alarm Low Set Point                       | 0x6D, 0x01, 0x02                            | REAL             |
| 6                   | 0x77, 0x01, 0x06                              | DINT            | Alarm 2 - Alarm High Set Point                      | 0x6D, 0x02, 0x01                            | REAL             |
| 7                   | 0x77, 0x01, 0x07                              | DINT            | Alarm 2 - Alarm Low Set Point                       | 0x6D, 0x02, 0x02                            | REAL             |
| 8                   | 0x77, 0x01, 0x08                              | DINT            | Alarm 3 - Alarm High Set Point                      | 0x6D, 0x03, 0x01                            | REAL             |
| 9                   | 0x77, 0x01, 0x09                              | DINT            | Alarm 3 - Alarm Low Set Point                       | 0x6D, 0x03, 0x02                            | REAL             |
| 10                  | 0x77, 0x01, 0x0A                              | DINT            | Alarm 4 - Alarm High Set Point                      | 0x6D, 0x04, 0x01                            | REAL             |
| 11                  | 0x77, 0x01, 0x0B                              | DINT            | Alarm 4 - Alarm Low Set Point                       | 0x6D, 0x04, 0x02                            | REAL             |
| 12                  | 0x77, 0x01, 0x0C                              | DINT            | Profile Action Request                              | 0x7A, 0x01, 0x0B                            | DINT             |
| 13                  | 0x77, 0x01, 0x0D                              | DINT            | Profile Start                                       | 0x7A, 0x01, 0x01                            | DINT             |
| 14                  | 0x77, 0x01, 0x0E                              | DINT            | Heat Proportional Band                              | 0x97, 0x01, 0x06                            | REAL             |
| 15                  | 0x77, 0x01, 0x0F                              | DINT            | Cool Proportional Band                              | 0x97, 0x01, 0x07                            | REAL             |
| 16                  | 0x77, 0x01, 0x10                              | DINT            | Time Integral                                       | 0x97, 0x01, 0x08                            | REAL             |
| 17                  | 0x77, 0x01, 0x11                              | DINT            | Time Derivative                                     | 0x97, 0x01, 0x09                            | REAL             |
| 18                  | 0x77, 0x01, 0x12                              | DINT            | Heat Hysteresis                                     | 0x97, 0x01, 0x0B                            | REAL             |
| 19                  | 0x77, 0x01, 0x13                              | DINT            | Cool Hysteresis                                     | 0x97, 0x01, 0x0C                            | REAL             |
| 20                  | 0x77, 0x01, 0x14                              | DINT            | Dead Band                                           | 0x97, 0x01, 0x0A                            | REAL             |

CIP Implicit T to O (Target to Originator) Assembly Structure

|                     |                                               | Targ            | CIP Implicit Assembly et (PM) to Originator (Master) |                                             |                  |
|---------------------|-----------------------------------------------|-----------------|------------------------------------------------------|---------------------------------------------|------------------|
| Assembly<br>Members | PM Assembly<br>Class, Instance,<br>Attritbute | PM<br>Data Type | Parameter                                            | Parameter<br>Class, Instance,<br>Attritbute | PLC<br>Data Type |
| 1                   | Cannot be changed                             | Binary          | Device Status                                        | none                                        | DINT             |
| 2                   | 0x77, 0x02, 0x01                              | DINT            | Analog Input 1, Analog Input Value                   | 0x68, 0x01, 0x01                            | REAL             |
| 3                   | 0x77, 0x02, 0x02                              | DINT            | Analog Input 1, Input Error                          | 0x68, 0x01. 0x02                            | REAL             |
| 4                   | 0x77, 0x02, 0x03                              | DINT            | Analog Input 2, Analog Input Value                   | 0x68, 0x02, 0x01                            | REAL             |
| 5                   | 0x77, 0x02, 0x04                              | DINT            | Analog Input 2, Input Error                          | 0x68, 0x02, 0x02                            | REAL             |
| 6                   | 0x77, 0x02, 0x05                              | DINT            | Alarm 1, Alarm State                                 | 0x6D, 0x01, 0x09                            | DINT             |
| 7                   | 0x77, 0x02, 0x06                              | DINT            | Alarm 2, Alarm State                                 | 0x6D, 0x02, 0x09                            | DINT             |
| 8                   | 0x77, 0x02, 0x07                              | DINT            | Alarm 3, Alarm State                                 | 0x6D, 0x03, 0x09                            | DINT             |
| 9                   | 0x77, 0x02, 0x08                              | DINT            | Alarm 4, Alarm State                                 | 0x09, 0x04, 0x09                            | DINT             |
| 10                  | 0x77, 0x02, 0x09                              | DINT            | Event Status                                         | 0x6E, 0x01, 0x05                            | DINT             |
| 11                  | 0x77, 0x02, 0x0A                              | DINT            | Event Status                                         | 0x6E, 0x02, 0x05                            | DINT             |
| 12                  | 0x77, 0x02, 0x0B                              | DINT            | Control Mode Active                                  | 0x97, 0x01, 0x02                            | DINT             |
| 13                  | 0x77, 0x02, 0x0C                              | DINT            | Heat Power                                           | 0x97, 0x01, 0x0D                            | REAL             |
| 14                  | 0x77, 0x02, 0x0D                              | DINT            | Cool Power                                           | 0x97, 0x01, 0x0E                            | REAL             |
| 15                  | 0x77, 0x02, 0x0E                              | DINT            | Limit State                                          | 0x70, 0x01, 0x06                            | DINT             |
| 16                  | 0x77, 0x02, 0x0F                              | DINT            | Profile Start                                        | 0x74, 0x01, 0x01                            | DINT             |
| 17                  | 0x77, 0x02, 0x10                              | DINT            | Profile Action Request                               | 0x74, 0x01, 0x0B                            | DINT             |
| 18                  | 0x77, 0x02, 0x11                              | DINT            | Current Profile                                      | 0x74, 0x01, 0x03                            | DINT             |
| 19                  | 0x77, 0x02, 0x12                              | DINT            | Current Step                                         | 0x74, 0x01, 0x04                            | DINT             |
| 20                  | 0x77, 0x02, 0x13                              | DINT            | Active Set Point                                     | 0x74, 0x01, 0x05                            | REAL             |
| 21                  | 0x77, 0x02, 0x14                              | DINT            | Step Time Remaining                                  | 0x74, 0x01, 0x09                            | DINT             |

As can be seen on the previous page the PM Implicit Assembly defaults (factory settings) to a populated assembly structure. If it is desired to modify any of the given assembly members there are many software tools available to do so. It is outside of the scope of this document to describe how to use those. What can be found in this document is the *process* to build the assembly structure. If viewing this document electronically simply click on the link below to read the section entitled " Modifying Implicit Assembly Members". Otherwise, turn back to the table of contents to find the above named section.

# **Compact Class Assembly Structure**

On the next four pages the 17 available members of the Compact Class are displayed. As an orientation to the format as displayed in this document notice that each member begins with header identified as "Assembly" and below the header you will see the member number along with parameter information contained within. While looking at these illustrations

| Assembly     | Class,<br>Instance, Attribute |
|--------------|-------------------------------|
| 1 A          | C = 0x71 (113)                |
| Analog Input | I = 1 to 4 ` ´                |
| Read         | A = 1                         |

keep in mind that each member is actually 32-bits in length. To better illustrate this information in this document, the following 6 pages present these members divided in half where the letter "A" in the page header and assembly number represents the most significant 16-bits where the letter "B" in the title and assembly number represents the least significant 16-bits of each member. In the event that these pages are printed out and then mixed up, simply match up the page headers placing them side by side. As an example, Compact Class 1 A through 7 A should be paired with Class 1 B through 7 B, left to right.

For further explanation as to what the Compact Class assembly is, navigate to the section entitled "Compact Assembly Class"

# Compact Class 1 A through 7 A

|              |                               |    |                                                                     |    |    |    |           | Instance | i        |    |    |    |    |    |    |    |    |
|--------------|-------------------------------|----|---------------------------------------------------------------------|----|----|----|-----------|----------|----------|----|----|----|----|----|----|----|----|
| Assembly     | Class,<br>Instance, Attribute | 31 | 30                                                                  | 29 | 28 | 27 | 26        | 25       | 24       | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| 1 A          | C = 0x71 (113)                |    | 30   29   20   21   20   23   24   23   22   21   20   19   10   11 |    |    |    |           |          |          |    |    |    |    |    |    |    |    |
| Analog Input | I = 1 to 4                    |    |                                                                     |    |    | Fi | Itered An | alog Inp | out Valu | ue |    |    |    |    |    |    |    |
| Read         | A = 1                         |    |                                                                     |    |    |    |           | •        |          |    |    |    |    |    |    |    |    |

Bits 16 to 31, Signed 16 bits with implied tenths precision (-32768.8 to 3276.7)

|                              |                                       |    |                       |    |    |    |    | Instance | i  |    |    |    |    |    |    |    |    |
|------------------------------|---------------------------------------|----|-----------------------|----|----|----|----|----------|----|----|----|----|----|----|----|----|----|
| Assembly                     | Class,<br>Instance, Attribute         | 31 | 30                    | 29 | 28 | 27 | 26 | 25       | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| 2 A<br>Control<br>Read/Write | C = 0x71 (113)<br>I = 1 to 4<br>A = 2 |    | Closed Loop Set Point |    |    |    |    |          |    |    |    |    |    |    |    |    |    |

Bits 16 to 31, Signed 16 bits with implied tenths precision (-32768.8 to 3276.7)

|                              |                                       |    |    |    |    |    |       | Instance | i + 1  |     |    |    |    |    |    |    |    |
|------------------------------|---------------------------------------|----|----|----|----|----|-------|----------|--------|-----|----|----|----|----|----|----|----|
| Assembly                     | Class,<br>Instance, Attribute         | 31 | 30 | 29 | 28 | 27 | 26    | 25       | 24     | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| 3 A<br>Control<br>Read/Write | C = 0x71 (113)<br>I = 1 to 4<br>A = 3 |    |    |    |    |    | Close | d Loop   | Set Po | int |    |    |    |    |    |    |    |

Bits 16 to 31, Signed 16 bits with implied tenths precision (-32768.8 to 3276.7)

|                |                               |    |    |    |    |    |        | Instance | i       |      |    |    |    |    |    |    |    |
|----------------|-------------------------------|----|----|----|----|----|--------|----------|---------|------|----|----|----|----|----|----|----|
| Assembly       | Class,<br>Instance, Attribute | 31 | 30 | 29 | 28 | 27 | 26     | 25       | 24      | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| 4 A<br>Control | C = 0x71 (113)<br>I = 1 to 4  |    |    |    |    |    | Heat F | roporti  | onal Ba | and  |    |    |    |    |    |    |    |
| Read/Write     | A = 4                         |    |    |    |    |    | Hoati  | .opo.u   | ona De  | 2110 |    |    |    |    |    |    |    |

Bits 16 to 31, Unsigned 16 bits with implied tenths precision (0 to 6553.5)

|                              |                                       |    |    |    |    |    |           | Instance | i       |        |      |    |    |    |    |    |    |
|------------------------------|---------------------------------------|----|----|----|----|----|-----------|----------|---------|--------|------|----|----|----|----|----|----|
| Assembly                     | Class,<br>Instance, Attribute         | 31 | 30 | 29 | 28 | 27 | 26        | 25       | 24      | 23     | 22   | 21 | 20 | 19 | 18 | 17 | 16 |
| 5 A<br>Control<br>Read/Write | C = 0x71 (113)<br>I = 1 to 4<br>A = 5 |    |    |    |    | Co | ol Propor | tional B | and (ir | stance | e i) |    |    |    |    |    |    |

Bits 16 to 31, Unsigned 16 bits with implied tenths precision (0 to 6553.5)

|              |                               |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |    | Instance | i + 1 |    |    |    |    |    |    |    |    |
|--------------|-------------------------------|-------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----------|-------|----|----|----|----|----|----|----|----|
| Assembly     | Class,<br>Instance, Attribute | 31    | 30          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28 | 27 | 26 | 25       | 24    | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| 6 A<br>Limit | C = 0x71 (113)<br>I = 1 to 4  | Limit | Input Input |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |    |          |       |    |    |    |    |    |    |    |    |
| Read         | A = 6                         |       |             | Hiput Firiput |    |    |    |          |       |    |    |    |    |    |    |    |    |

Bits 16 to 28, Signed 16 bits whole (-4096 to 4095)
Bit 29, Analog Input Error Status (0 = None, 1 = Error)
Bits 30 and 31, Limit State (00 = None, 01 = Low Limit, 10 = Limit High, 11 = Other)

|                            |                                       |       |                |                           |                              |    |    | nstance | i + 1 |    |    |    |    |    |    |    |    |
|----------------------------|---------------------------------------|-------|----------------|---------------------------|------------------------------|----|----|---------|-------|----|----|----|----|----|----|----|----|
| Assembly                   | Class,<br>Instance, Attribute         | 31    | 30             | 29                        | 28                           | 27 | 26 | 25      | 24    | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| 7 A<br>Limit<br>Read/Write | C = 0x71 (113)<br>I = 1 to 4<br>A = 7 | Spare | Limit<br>Clear | Clear<br>Latched<br>Error | lear ched Analog Input Value |    |    |         |       |    |    |    |    |    |    |    |    |

Bits 16 to 28, Signed 13 bits whole (-4096 to 4095) Bit 29, Clear Latched Input Error (0 = Ignore, 1 = Clear) Bits 30, Limit Clear (0 = Ignore, 1 = Clear)

# Compact Class 1 B through 7 B

|          |                          |                         |                     |     |                |                          |   | Inst | ance i |   |   |   |   |   |   |   |
|----------|--------------------------|-------------------------|---------------------|-----|----------------|--------------------------|---|------|--------|---|---|---|---|---|---|---|
| Assembly | 15                       | 14                      | 13                  | 12  | 11             | 10                       | 9 | 8    | 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 1 B      | Input<br>Error<br>Status | Loop<br>Error<br>Status | Actu<br>Cont<br>Mod | rol | Tune<br>Status | 1 10 9 8 7 6 5 4 3 2 1 0 |   |      |        |   |   |   |   |   |   |   |

Bits 0 to 10, Signed 10 bits with implied tenths precision (-100.0 to 100.0) Bit 11, Loop Tuning Status (0 = Off, 1 = Anything Else)

Bits 12 and 13, Actual Control Mode (00 = Off, 01 = Manual, 10 = Auto)

Bit 14, Loop Error Status (0 = None, 1 = Error)

Bit 15, Analog Input Error (0 = None, 1 = Error)

|          |       |                       |         |      |                  |    |   | Inst | ance i |          |         |    |   |   |   |   |
|----------|-------|-----------------------|---------|------|------------------|----|---|------|--------|----------|---------|----|---|---|---|---|
| Assembly | 15    | 14                    | 13      | 12   | 11               | 10 | 9 | 8    | 7      | 6        | 5       | 4  | 3 | 2 | 1 | 0 |
| 2 B      | Spare | Open<br>Loop<br>Clear | Control | Mode | Initiate<br>Tune |    |   |      | С      | pen Loop | Set Poi | nt |   |   |   |   |

Bits 0 to 10, Signed 10 bits with implied tenths precision (-100.0 to 100.0)

Bit 11, Initiate Tune (0 = No, 1 = Yes)

Bits 12 and 13, Actual Control Mode (00 = Off, 01 = Manual, 10 = Auto)

Bit 14, Open Loop Clear (0 = Ignore, 1 = Clear)

|          |    |                                                                    |  |  |  |    |          | Inst     | tance i |  |  |  |  |  |  |  |
|----------|----|--------------------------------------------------------------------|--|--|--|----|----------|----------|---------|--|--|--|--|--|--|--|
| Assembly | 15 | 5   14   13   12   11   10   9   8   7   6   5   4   3   2   1   0 |  |  |  |    |          |          |         |  |  |  |  |  |  |  |
| 3 B      |    |                                                                    |  |  |  | CI | osed Loc | p Set Po | int     |  |  |  |  |  |  |  |

Bits 0 to 15, Signed 16 bits with implied tenths precision (-3276.8 to 3276.8)

|          |    |                                                                    |  |  |  |  |         | Ins     | tance i |  |  |  |  |  |  |  |
|----------|----|--------------------------------------------------------------------|--|--|--|--|---------|---------|---------|--|--|--|--|--|--|--|
| Assembly | 15 | 5   14   13   12   11   10   9   8   7   6   5   4   3   2   1   0 |  |  |  |  |         |         |         |  |  |  |  |  |  |  |
| 4 B      |    |                                                                    |  |  |  |  | Integra | al Time |         |  |  |  |  |  |  |  |

Bits 0 to 15, Unsigned 16 bits whole (0 to 65535)

|   |          |    |                                                                                                                                                    |  |  |  |  |          | Instance i |  |  |  |  |  |  |  |
|---|----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|----------|------------|--|--|--|--|--|--|--|
|   | Assembly | 15 | 14         13         12         11         10         9         8         7         6         5         4         3         2         1         0 |  |  |  |  |          |            |  |  |  |  |  |  |  |
| Ī | 5 B      |    |                                                                                                                                                    |  |  |  |  | Derivati | ve Time    |  |  |  |  |  |  |  |

Bits 0 to 15, Unsigned 16 bits whole (0 to 65535)



Bits 0 to 12, Signed 13 bits whole (-4096 to 4095) Bits 13, Analog Input Error Status (0 = None, 1 = Error)

Bit 14 and 15, Limit State (00 = None, 01 = Limit low, 10 = Limit high, 11 = Other)

|          |       |                |                           |    |    |    |   | Ins | tance i    |         |   |   |   |   |   |   |
|----------|-------|----------------|---------------------------|----|----|----|---|-----|------------|---------|---|---|---|---|---|---|
| Assembly | 15    | 14             | 13                        | 12 | 11 | 10 | 9 | 8   | 7          | 6       | 5 | 4 | 3 | 2 | 1 | 0 |
| 7 B      | Spare | Limit<br>Clear | Clear<br>Latched<br>Error |    |    |    |   | Lim | it Set Poi | nt High |   |   |   |   |   |   |

Bits 0 to 12, Signed 13 bits whole (-4096 to 4095) Bit 13, Clear Latched Input Error (0 = Ignore, 1 = Clear)

Bit 14, Limit Clear (0 = Ignore, 1 = Clear)

# Compact Class 8 A through 13 A

|                      |                                       | Instance | e i + 15 | Instanc | e i + 14 | Instanc | e i + 13 | Instance | i + 12 | Instanc | e i + 11 | Instanc | e i + 10 | Instance | e i + 9 | Instanc | e i + 8 |
|----------------------|---------------------------------------|----------|----------|---------|----------|---------|----------|----------|--------|---------|----------|---------|----------|----------|---------|---------|---------|
| Assembly             | Class,<br>Instance, Attribute         | 31       | 30       | 29      | 28       | 27      | 26       | 25       | 24     | 23      | 22       | 21      | 20       | 19       | 18      | 17      | 16      |
| 8 A<br>Limit<br>Read | C = 0x71 (113)<br>I = 1 to 4<br>A = 8 | Limit    | State    | Limit   | State    | Limit   | State    | Limit    | State  | Limit   | State    | Limit   | State    | Limit    | State   | Limit   | State   |

Bits 16 to 31, Paired bits representing the state of up to 16 limits (00 = None, 01 = Limit low,, 10 = Limit High)

|                            |                                       | Instance | i + 15         | Instance | e i + 14       | Instance | i + 13         | Instance | i + 12         | Instance | i + 11         | Instance | e i + 10       | Instanc | e i + 9        | Instance | 8 + i s        |
|----------------------------|---------------------------------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|----------|----------------|---------|----------------|----------|----------------|
| Assembly                   | Class,<br>Instance, Attribute         | 31       | 30             | 29       | 28             | 27       | 26             | 25       | 24             | 23       | 22             | 21       | 20             | 19      | 18             | 17       | 16             |
| 9 A<br>Limit<br>Read/Write | C = 0x71 (113)<br>I = 1 to 4<br>A = 9 | Spare    | Limit<br>Clear | Spare   | Limit<br>Clear | Spare    | Limit<br>Clear |

Bits 16 to 31, Paired bits representing the state of up to 16 limits (00 = None, 01 = Limit low,, 10 = Limit High)

|                             |                                               |       |                |                           |  |  |  | Instance | i     |        |          |   |  |    |  |  |
|-----------------------------|-----------------------------------------------|-------|----------------|---------------------------|--|--|--|----------|-------|--------|----------|---|--|----|--|--|
| Assembly                    | Class,<br>Instance, Attribute                 | 31    | Cloor          |                           |  |  |  |          |       |        |          |   |  | 16 |  |  |
| 10 A<br>Limit<br>Read/Write | C = 0x71 (113)<br>I = 1 to 4<br>A = 0x0A (10) | Spare | Limit<br>Clear | Clear<br>Latched<br>Error |  |  |  |          | Limit | Set Po | int Higl | h |  |    |  |  |

Bits 16 to 28, Signed 13 bits whole (-4096 to 4095) - Bit 29, Clear Latched Input Error (0 = Ignore, 1 = Clear) Bits 30, Limit Clear (0 = Ignore, 1 = Clear)

|                    |                                               |       |                 |                  |    |    |    | Instance | i + 1 |          |     |    |    |    |    |    |    |
|--------------------|-----------------------------------------------|-------|-----------------|------------------|----|----|----|----------|-------|----------|-----|----|----|----|----|----|----|
| Assembly           | Class,<br>Instance, Attribute                 | 31    | 30              | 29               | 28 | 27 | 26 | 25       | 24    | 23       | 22  | 21 | 20 | 19 | 18 | 17 | 16 |
| 11 A<br>CT<br>Bead | C = 0x71 (113)<br>I = 1 to 4<br>A = 0x0B (11) | Spare | Heater<br>Error | Current<br>Error |    |    |    |          | С     | urrent I | RMS |    |    |    |    |    |    |

Bits 16 to 28, Unsigned 11 bits (0 to 2047)
Bit 29, Current Error (00 = None, 01 = Low, 10 = High)
Bit 30, Heater Error (00 = None, 01 = Open, 10 = Shorted)

|                       |                                               | Instance | i + 15 | Instance | e i + 14 | Instance | e i + 13 | Instance | i + 12 | Instance | e i + 11 | Instance | e i + 10 | Instanc | e i + 9 | Instance | e i + 8 |
|-----------------------|-----------------------------------------------|----------|--------|----------|----------|----------|----------|----------|--------|----------|----------|----------|----------|---------|---------|----------|---------|
| Assembly              | Class,<br>Instance, Attribute                 | 31       | 30     | 29       | 28       | 27       | 26       | 25       | 24     | 23       | 22       | 21       | 20       | 19      | 18      | 17       | 16      |
| 12 A<br>Alarm<br>Read | C = 0x71 (113)<br>I = 1 to 4<br>A = 0x0C (12) | Alarm    | State  | Alarm    | State    | Alarm    | State    | Alarm    | State  | Alarm    | State    | Alarm    | State    | Alarm   | State   | Alarm    | State   |

Bits 16 to 31, Paired bits reflecting the state of up to 16 alarms (00 = None, 01 = Alarm Low, 10 = Alarm High, 11 = Other)

|                             |                                               | Instance | i + 15 | Instanc | e i + 14 | Instance | e i + 13 | Instance    | i + 12    | Instance | e i + 11 | Instance | e i + 10    | Instanc | e i + 9 | Instance | e i + 8     |
|-----------------------------|-----------------------------------------------|----------|--------|---------|----------|----------|----------|-------------|-----------|----------|----------|----------|-------------|---------|---------|----------|-------------|
| Assembly                    | Class,<br>Instance, Attribute                 | 31       | 30     | 29      | 28       | 27       | 26       | 25          | 24        | 23       | 22       | 21       | 20          | 19      | 18      | 17       | 16          |
| 13 A<br>Alarm<br>Read/Write | C = 0x71 (113)<br>I = 1 to 4<br>A = 0x0D (13) | Alarm    | Clear  | Alarm S | Silence  | Alarm    | Clear    | Ala<br>Sile | rm<br>nce | Alarm    | Clear    |          | arm<br>ence | Alarm   | Clear   |          | arm<br>ence |

Bits 16 to 31, Paired bits reflecting the state of up to 16 alarms (0 = Ignore, 1 = Clear)

# Compact Class 8 B through 13 B

|          | Instar  | nce i + 7 | Instan    | ce i + 6 | Instanc | ce i + 5 | Instan | ce i + 4 | Instanc | e i + 3 | Instanc | e i + 2 | Instanc | e i + 1 | Instar | nce i |
|----------|---------|-----------|-----------|----------|---------|----------|--------|----------|---------|---------|---------|---------|---------|---------|--------|-------|
| Assembly | 15      | 14        | 13        | 12       | 11      | 10       | 9      | 8        | 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0     |
| 8 B      | Limit S | State     | Limit Sta | ate      | Limit   | State    | Limit  | State    | Limit   | State   | Limit   | State   | Limit   | : State | Limit  | State |

Bits 0 to 15, Paired bits representing the state of up to 16 limits (00 = None, 01 = Limit low,, 10 = Limit High)

|          | Instan | ice i + 7      | Instanc | ce i + 6       | Instanc | e i + 5        | Instanc | e i + 4        | Instance | e i + 3        | Instance | i + 2          | Instance | i + 1          | Instan | ice i          |
|----------|--------|----------------|---------|----------------|---------|----------------|---------|----------------|----------|----------------|----------|----------------|----------|----------------|--------|----------------|
| Assembly | 15     | 14             | 13      | 12             | 11      | 10             | 9       | 8              | 7        | 6              | 5        | 4              | 3        | 2              | 1      | 0              |
| 9 B      | Spare  | Limit<br>Clear | Spare   | Limit<br>Clear | Spare   | Limit<br>Clear | Spare   | Limit<br>Clear | Spare    | Limit<br>Clear | Spare    | Limit<br>Clear | Spare    | Limit<br>Clear | Spare  | Limit<br>Clear |

Bits 0, 2, 4, 6, 8, 10, 12 and 14, Limit Clear for instance i to instance i (0 = Ignore, 1 = Clear)

|          |    |       |    |    |                              |  |  |     | Instance   | i       |  |  |  |  |  |  |  |
|----------|----|-------|----|----|------------------------------|--|--|-----|------------|---------|--|--|--|--|--|--|--|
| Assembly | 15 | 14    | 13 | 12 | 12 11 10 9 8 7 6 5 4 3 2 1 0 |  |  |     |            |         |  |  |  |  |  |  |  |
| 10 B     |    | Spare |    |    |                              |  |  | Lim | nit Set Po | int Low |  |  |  |  |  |  |  |

Bits 0 to 12, Signed 13 bits whole (-4096 to 4095)

|          |       |                 |                  |    |  |  |  |  | Instance  | i  |  |  |  |  |  |  |  |
|----------|-------|-----------------|------------------|----|--|--|--|--|-----------|----|--|--|--|--|--|--|--|
| Assembly | 15    | 14              | 13               | 12 |  |  |  |  |           |    |  |  |  |  |  |  |  |
| 11 B     | Spare | Heater<br>Error | Current<br>Error |    |  |  |  |  | Current R | MS |  |  |  |  |  |  |  |

Bits 16 to 28, Unsigned 11 bits (0 to 2047)
Bit 29, Current Error (00 = None, 01 = Low, 10 = High)
Bit 30, Heater Error (00 = None, 01 = Open, 10 = Shorted)

|   |          | Instanc | e i + 7 | Instance | i + 6 | Instanc | e i + 5 | Instanc | e i + 4 | Instance | e i + 3 | Instance | e i + 2 | Instance | e i + 1 | Instan | ce i  |
|---|----------|---------|---------|----------|-------|---------|---------|---------|---------|----------|---------|----------|---------|----------|---------|--------|-------|
|   | Assembly | 15      | 14      | 13       | 12    | 11      | 10      | 9       | 8       | 7        | 6       | 5        | 4       | 3        | 2       | 1      | 0     |
| Ī | 12 B     | Alarm   | State   | Alarm    | State | Alarm   | State   | Alarm   | State   | Alarm    | State   | Alarm    | State   | Alarm    | State   | Alarm  | State |

Bits 0 to 15, Paired bits reflecting the state of up to 16 alarms (00 = None, 01 = Alarm Low, 10 = Alarm High, 11 = Other)

|          | Instance | i + 7 | Instand | ce i + 6 | Instanc | e i + 5 | Instanc     | e i + 4 | Instance | e i + 3 | Instance | e i + 2 | Instance | e i + 1 | Instan | ce i    |
|----------|----------|-------|---------|----------|---------|---------|-------------|---------|----------|---------|----------|---------|----------|---------|--------|---------|
| Assembly | 15       | 14    | 13      | 12       | 11      | 10      | 9           | 8       | 7        | 6       | 5        | 4       | 3        | 2       | 1      | 0       |
| 13 B     | Alarm    | Clear | Alarm   | Silence  | Alarm   | n Clear | Ala<br>Sile | rm      | Alarm    | Clear   | Alarm    | Silence | Alarm    | Clear   | Alarm  | Silence |

Bits 0 to 15, Paired bits reflecting the state of up to 16 alarms (0 = Ignore, 1 = Clear)

# Compact Class 14 A through 19 A

|                             |                                               |                |                                                                                                                                                              |  |  |  |      | Instance | i       |      |  |  |  |  |  |  |
|-----------------------------|-----------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|------|----------|---------|------|--|--|--|--|--|--|
| Assembly                    | Class,<br>Instance, Attribute                 | 31             | 30         29         28         27         26         25         24         23         22         21         20         19         18         17         16 |  |  |  |      |          |         |      |  |  |  |  |  |  |
| 14 A<br>Alarm<br>Read/Write | C = 0x71 (113)<br>I = 1 to 4<br>A = 0x0E (14) | Alarm<br>Clear |                                                                                                                                                              |  |  |  | Alar | m Set I  | Point H | ligh |  |  |  |  |  |  |

Bits 16 to 30, Signed 15 bits with implied tenths precision (-1638.4 to 1638.3) Bit 31, Alarm Clear (0 = Ignore, 1 = Clear)

|                              |                                               |                          |                                              |  |  |  |            | Instance | i + 1   |        |  |  |  |    |  |  |
|------------------------------|-----------------------------------------------|--------------------------|----------------------------------------------|--|--|--|------------|----------|---------|--------|--|--|--|----|--|--|
| Assembly                     | Class,<br>Instance, Attribute                 | 31                       | 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 |  |  |  |            |          |         |        |  |  |  | 16 |  |  |
| 15 A<br>Analog Input<br>Read | C = 0x71 (113)<br>I = 1 to 4<br>A = 0x0F (15) | Input<br>Error<br>Status |                                              |  |  |  | Filtered A | Analog   | Input V | alue ( |  |  |  |    |  |  |

Bits 16 to 30, Signed 15 bits with implied tenths precision (-1638.4 to 1638.3) Bit 31, Analog Input Error (0 = None, 1 = Error)

|                      |                               |    |                                              |  |  |  |          | Instance | i + 1 |       |  |  |  |  |  |  |
|----------------------|-------------------------------|----|----------------------------------------------|--|--|--|----------|----------|-------|-------|--|--|--|--|--|--|
| Assembly             | Class,<br>Instance, Attribute | 31 | 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 |  |  |  |          |          |       |       |  |  |  |  |  |  |
| 16 A<br>Analog Input | C = 0x71 (113)<br>I = 1 to 4  |    |                                              |  |  |  | Filtered | Analoc   | Input | Value |  |  |  |  |  |  |
| Read                 | A = 0x10 (16)                 |    |                                              |  |  |  |          |          | ,     |       |  |  |  |  |  |  |

Bits 16 to 31, Signed 16 bits with implied tenths precision (-3276.8 to 3276.8)

|                              |                                               | Instance | i + 15                   | Instanc | e i + 14                 | Instance | e i + 13                 | Instance | e i + 12                 | Instanc | e i + 11                 | Instanc | e i + 10                 | Instanc | e i + 9                  | Instance | e i + 8                  |
|------------------------------|-----------------------------------------------|----------|--------------------------|---------|--------------------------|----------|--------------------------|----------|--------------------------|---------|--------------------------|---------|--------------------------|---------|--------------------------|----------|--------------------------|
| Assembly                     | Class,<br>Instance, Attribute                 | 31       | 30                       | 29      | 28                       | 27       | 26                       | 25       | 24                       | 23      | 22                       | 21      | 20                       | 19      | 18                       | 17       | 16                       |
| 17 A<br>Analog Input<br>Read | C = 0x71 (113)<br>I = 1 to 4<br>A = 0x11 (17) | Spare    | Input<br>Error<br>Status | Spare   | Input<br>Error<br>Status | Spare    | Input<br>Error<br>Status | Spare    | Input<br>Error<br>Status | Spare   | Input<br>Error<br>Status | Spare   | Input<br>Error<br>Status | Spare   | Input<br>Error<br>Status |          | Input<br>Error<br>Status |

Bits 16, 18, 20, 22, 24, 26, 28, 30, Analog Input Error Status (0 = None, 1 = Error)

# Compact Class 14 B through 17 B

|          |                  |                                                                                                                                                               |  |  |  |  |       | Instance i |     |  |  |  |  |  |  |  |
|----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|-------|------------|-----|--|--|--|--|--|--|--|
| Assembly | 15               | 15         14         13         12         11         10         9         8         7         6         5         4         3         2         1         0 |  |  |  |  |       |            |     |  |  |  |  |  |  |  |
| 14 B     | Alarm<br>Silence |                                                                                                                                                               |  |  |  |  | Alarm | Set Poin   | Low |  |  |  |  |  |  |  |

Bits 0 to 14, Signed 15 bits with implied tenths precision (-1638.4 to 1638.3) Bit 15, Alarm Silence (0 = Ignore, 1 = Silence)

|          |                          |                                    |  |  |  |   | Ins       | tance i  |         |    |  |  |  |  |  |
|----------|--------------------------|------------------------------------|--|--|--|---|-----------|----------|---------|----|--|--|--|--|--|
| Assembly | 15                       | 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |  |  |  |   |           |          |         |    |  |  |  |  |  |
| 15 B     | Input<br>Error<br>Status |                                    |  |  |  | F | iltered A | nalog In | put Val | ue |  |  |  |  |  |

Bits 0 to 14, Signed 15 bits with implied tenths precision (-1638.4 to 1638.3) Bit 15, Analog Input Error (0 = None, 1 = Error)

|          |    |                                    |  |  |  |       | Insta    | nce i    |         |   |  |  |  |  |  |
|----------|----|------------------------------------|--|--|--|-------|----------|----------|---------|---|--|--|--|--|--|
| Assembly | 15 | 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |  |  |  |       |          |          |         |   |  |  |  |  |  |
| 16 B     |    |                                    |  |  |  | Filte | ered Ana | alog Inp | ut Valu | е |  |  |  |  |  |

Bits 0 to 15, Signed 16 bits with implied tenths precision (-3276.8 to 3276.8)

|          | Instance | i + 7                    | Instanc | e i + 6                  | Instance | i + 5                    | Instan | ice i + 4                | Instanc | e i + 3                  | Instance | i + 2                    | Instance | i + 1                    | Instan | ce i                     |
|----------|----------|--------------------------|---------|--------------------------|----------|--------------------------|--------|--------------------------|---------|--------------------------|----------|--------------------------|----------|--------------------------|--------|--------------------------|
| Assembly | 15       | 14                       | 13      | 12                       | 11       | 10                       | 9      | 8                        | 7       | 6                        | 5        | 4                        | 3        | 2                        | 1      | 0                        |
| 17 B     | Spare    | Input<br>Error<br>Status | Spare   | Input<br>Error<br>Status | Spare    | Input<br>Error<br>Status | Spare  | Input<br>Error<br>Status | Spare   | Input<br>Error<br>Status | Spare    | Input<br>Error<br>Status | Spare    | Input<br>Error<br>Status | Spare  | Input<br>Error<br>Status |

Bits 0, 2, 4, 6, 8, 10, 12, 14, Analog Input Error Status(0 = None, 1 = Error)

# **Specifications**

### LineVoltage/Power (Minimum/Maximum Ratings)

- 85 to 264V~ (ac), 47 to 63Hz
- 20 to 28V~ (ac), 47 to 63Hz
- 12 to 40V = (dc)
- 14VA maximum power consumption (PM4, 8 & 9)
- 10VAmaximum power consumption (PM6)
- Data retention upon power failure via non-volatile memory
- Compliant with SEMIF47-0200, Figure R1-1 voltage sag requirements @24V ~ (ac) or higher

#### **Environment**

- 0 to 149°F (-18 to 65°C) operating temperature
- -40 to 185°F (-40to85°C) storage temperature
- 0 to 90%RH, non-condensing

### Accuracy

- Calibration accuracy and sensor conformity: ±0.1% of span, ±1°C
   @ the calibrated ambient temperature and rated line voltage
- Types R, S, B; 0.2%
- Type T below -50°C; 0.2%
- Calibration ambient temperature @ 77 ±5°F (25±3°C)
- Accuracy span :1000 °F (540°C) min.
- Temperature stability: ±0.1 °F/°F (±0.1°C/°C) rise in ambient max.

### **Agency Approvals**

- $\bullet$  UL® Listed to UL 61010-1 File E185611
- UL® Reviewed to CSA C22.2 No.61010-1-04
- UL® 50 Type 4X, NEMA 4X indoor locations, IP66 front panel seal (indoor use only)
- FM Class 3545 File 3029084 temperature limit switches
- CE-See Declaration of Conformity RoHS and W.E.E.E.complaint
- ODVA-EtherNet/IPTM and DeviceNet Compliance
- UL Listed to ANSI/ISA 12.12.01-2007 File E184390
- This equipment is suitable for use in Class 1, Div.2, Groups A, B, C and D or non-hazardous locations only. Temperature Code T4A
- UL reviewed to Standard No. CSA C22.2 No.213-M1987, Canadian Hazardous locations
- PM6 CSA C22.2 No. 24 File 158031 Class 4813-02, 1/16 DIN CSA Approved

### Controller

- User selectable heat/cool, on-off, P, PI, PD, PID or alarm action, not valid for limit controllers
- Auto-tune with TRU-TUNE®+ adaptive control algorithm
- Control sampling rates: input = 10Hz, outputs = 10Hz

# Profile Ramp/Soak - Real Time Clock and Battery Back-up

- Accuracy (typical): ±30PPM at 77°F (25°C)
- $\bullet$  +30/-100 PPM at -4 to 149°F (-20 to 65°C)
- Battery type: lithium (recycle properly)
- $\bullet$  Battery typical life: three cumulative years of unpowered life at 77°F (25°C)

### **Isolated Serial Communications**

- EIA232/485, Modbus® RTU
- EtherNet/IPTM, DeviceNetTM (ODVA certified)
- Modbus® TCP
- Profibus DP

## Wiring Termination—Touch-Safe Terminals

Input, power and controller output terminals are touch safe removable 12 to 22 AWG

### **Universal Input**

- · Thermocouple, grounded or ungrounded sensors
- >20M $\Omega$  input impedance
- 3µA open sensor detection
- Max. of 2KΩ source resistance
- RTD 2 or 3 wire, platinum,  $100\Omega$  and  $1000\Omega$  @ 0°C calibration to

DIN curve  $(0.00385\Omega/\Omega/^{\circ}C)$ 

• Process, 0-20mA @ 100 $\Omega$  ,or 0-10V =(dc) @ 20k $\Omega$  input impedance

Voltage Input Ranges

- Accuracy ±10mV ±1 LSD at standard conditions
- Temperature stability ±100 PPM/°C maximum

#### Milliamp Input Ranges

- Accuracy ±20µA ±1 LSD at standard conditions
- Temperature stability ±100 PPM/°C maximum

#### Resolution Input Ranges

- 0 to 10V: 200 µV nominal
- 0 to 20 mA: 0.5 mA nominal
- Potentiometer: 0 to  $1,200\Omega$
- •Inverse scaling

| Input Type                 | Max<br>Error<br>@ 25<br>Deg C | Accuracy<br>Range<br>Low | Accuracy<br>Range<br>High | Units       |
|----------------------------|-------------------------------|--------------------------|---------------------------|-------------|
| J                          | ±1.75                         | 0                        | 750                       | Deg C       |
| K                          | ±2.45                         | -200                     | 1250                      | Deg C       |
| T (-200 to 350)            | ±1.55                         | -200                     | 350                       | Deg C       |
| N                          | ±2.25                         | 0                        | 1250                      | Deg C       |
| E                          | ±2.10                         | -200                     | 900                       | Deg C       |
| R                          | ±3.9                          | 0                        | 1450                      | Deg C       |
| S                          | ±3.9                          | 0                        | 1450                      | Deg C       |
| В                          | ±2.66                         | 870                      | 1700                      | Deg C       |
| C                          | ±3.32                         | 0                        | 2315                      | Deg C       |
| D                          | ±3.32                         | 0                        | 2315                      | Deg C       |
| F (PTII)                   | ±2.34                         | 0                        | 1343                      | Deg C       |
| RTD, 100 ohm               | ±2.00                         | -200                     | 800                       | Deg C       |
| RTD, 1000 ohm              | ±2.00                         | -200                     | 800                       | DegC        |
| mV                         | ±0.05                         | 0                        | 50                        | mV          |
| Volts                      | ±0.01                         | 0                        | 10                        | Volts       |
| mAdc                       | ±0.02                         | 2                        | 20                        | mAmps<br>DC |
| mAac                       | ±5                            | -50                      | 50                        | mAmps<br>AC |
| Potentiometer,<br>1K range | ±1                            | 0                        | 1000                      | Ohms        |

| Operating Range |           |            |  |  |  |
|-----------------|-----------|------------|--|--|--|
| Input Type      | Range Low | Range High |  |  |  |
| J               | -210      | 1200       |  |  |  |
| K               | -270      | 1371       |  |  |  |
| T               | -270      | 400        |  |  |  |
| N               | -270      | 1300       |  |  |  |
| E               | -270      | 1000       |  |  |  |
| R               | -50       | 1767       |  |  |  |
| S               | -50       | 1767       |  |  |  |
| В               | -50       | 1816       |  |  |  |
| C               | 0         | 2315       |  |  |  |
| D               | 0         | 2315       |  |  |  |
| F (PTII)        | 0         | 1343       |  |  |  |
| RTD (100 ohm)   | -200      | 800        |  |  |  |
| RTD (1000 ohm)  | -200      | 800        |  |  |  |

| Operating Range (cont.)    |     |       |  |  |  |
|----------------------------|-----|-------|--|--|--|
| mV                         | -50 | 50    |  |  |  |
| Volts                      | 0   | 10    |  |  |  |
| mAdc                       | 0   | 20    |  |  |  |
| mAac                       | -50 | 50    |  |  |  |
| Potentiometer, 1K<br>range | 0   | 1200  |  |  |  |
| Resistance, 5K range       | 0   | 5000  |  |  |  |
| Resistance, 10K range      | 0   | 10000 |  |  |  |
| Resistance, 20K range      | 0   | 20000 |  |  |  |
| Resistance, 40K range      | 0   | 40000 |  |  |  |

|                               | Thermistor Input             |                          |                           |       |  |  |  |  |
|-------------------------------|------------------------------|--------------------------|---------------------------|-------|--|--|--|--|
| Input<br>Type                 | Max Er-<br>ror @ 25<br>Deg C | Accuracy<br>Range<br>Low | Accuracy<br>Range<br>High | Units |  |  |  |  |
| Thermis-<br>tor, 5K<br>range  | ±5                           | 0                        | 5000                      | Ohms  |  |  |  |  |
| Thermis-<br>tor, 10K<br>range | ±10                          | 0                        | 10000                     | Ohms  |  |  |  |  |
| Thermis-<br>tor, 20K<br>range | ±20                          | 0                        | 20000                     | Ohms  |  |  |  |  |
| Thermistor, 40K               | ±40                          | 0                        | 40000                     | Ohms  |  |  |  |  |

- 0 to 40 KW, 0 to 20 KW, 0 to 10 KW, 0 to 5 KW
- 2.252ΚΩ and 10ΚΩ base at 77°F (25°C)
- Linearization curves built in
- Third party Thermistor compatibility requirements

| Base<br>R @<br>25C | Alpha<br>Tech-<br>niques | Beta<br>THERM | YSI | Prompt |
|--------------------|--------------------------|---------------|-----|--------|
| 2.252K             | Curve A                  | 2.2K3A        | 004 | A      |
| 10K                | Curve A                  | 10K3A         | 016 | В      |
| 10K                | Curve C                  | 10K4A         | 006 | C      |

### **Current Measurement**

- $\bullet Accepts \ 0\text{-}50 mA \ signal \ (user \ programmable \ range) \\$
- •Displayed operating range and resolution can be scaled and are user programmable
- •Requires optional current transformer

### 2 Digital Input/Output Option - 2 DIO

- $\bullet$  Digital input update rate 10Hz
  - DC voltage
    - Max. input 36V @ 3mA
    - Min. high state 3V at 0.25mA
    - Max. low state 2V
  - Dry contact
  - $\bullet$  Min. open resistance  $10 \mathrm{K}\Omega$
  - $\bullet$  Max. closed resistance  $50\Omega$
  - Max. short circuit 20mA
- $\bullet$  Digital output update rate 10Hz
  - Output voltage 24V, current limit, Output 6 = 10mA max., Output 5 = 3 pole DIN-A-MITE  $^{\circledR}$  or 24mA max.

## 6 Digital Input/Output Option - 6 DIO

- Digital input or output
- Update rate 10Hz

- Switched DC
  - Switched DC 24-32 V, 80 mA max, SELV, Limited Energy
  - Max. supply current source 40mA at 20V = (dc) and 80mA @12V = (dc)
  - Max.lowstate2V
- •Open Collector
  - Max. switched voltage is 32V = (dc)
  - Max. switched current per output is 1.5A
  - Max. switched current for all 6 outputs is 8A

### **Output Hardware**

- Switched dc = 22 to 32V= (dc) @30mA output 1 and 3, 10mA for output 2 and 4
- Switched dc/open collector = 30V= (dc) max. @ 100mA max. current sink
- Solid State Relay (SSR), FormA, 0.5A @  $24V\sim$  (ac) min.,  $240V\sim$  (ac) max., 1A at 50°F linear derating to 0.5A at 149°F resistive, opto-isolated, without contact suppression,  $120/240V\sim$  (ac) 20 VA pilot duty
- Electromechanical relay, Form C, 5A, 24 to 240V~ (ac) or 30V= (dc)max., resistive load, 100,000 cycles at rated load, 125 VA pilot duty at 120/240V~ (ac), 25 VA at 24V~ (ac)
- Electromechanical relay, FormA, 5A, 24 to 240V~ (ac) or 30V= (dc) max., resistive load, 100,000 cycles at rated load, 125 VA pi lot duty at 120/240V~ (ac), 25 VA at 24V~ (ac)
- NO-ARC relay, FormA, 15A, 24 to 240V~ (ac), noV= (dc), resistive load, 2 million cycles at rated load
- Universal process/retransmit, Output range selectable:
  - 0 to 10V =(dc) into a min. 1,000 $\Omega$  load
  - 0 to 20mA into max.  $800\Omega$  load

#### Resolution

- dc ranges: 2.5mV nominal
- mA ranges: 5 µA nominal

Calibration Accuracy

- dc ranges: ±15 mV
- mA ranges: ±30 μA

Temperature Stability

- 100 ppm/°C

### **Operator Interface**

- Dual 4 digit, 7 segment LED displays
- Advance, infinity, up and down keys, plus optional programmable EZ-KEY(s) depending on model size
- Typical display update rate 1Hz
- RESET key substituted for infinity on all models including the limit control

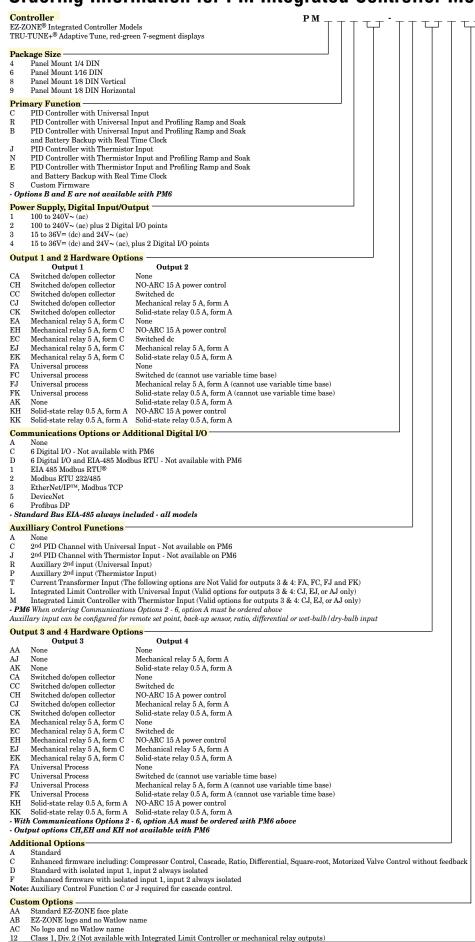
|            | Dimensions                |                       |                       |                                                                               |  |  |  |
|------------|---------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------------|--|--|--|
| Size       | Behind<br>Panel<br>(max.) | Width                 | Height                | Display Character<br>Height                                                   |  |  |  |
| 1/4        | 100.8 mm<br>(3.97 in)     | 100.3 mm<br>(3.95 in) | 100.3 mm<br>(3.95 in) | up: 11.43 mm (0.450 in) middle: 9.53 mm (0.375 in) low: 7.62 mm (0.300 in)    |  |  |  |
| 1/16       | 101.6 mm<br>(4.00 in)     | 53.3 mm<br>(2.10 in)  | 53.3 mm<br>(2.10 in)  | up: 10.80 mm (0.425<br>in)<br>low: 6.98 mm (0.275<br>in)                      |  |  |  |
| 1/8<br>(H) | 101.6 mm<br>(4.00 in)     | 100.3 mm<br>(3.95 in) | 54.8 mm<br>(2.16 in)  | top: 11.4 mm (0.450 in) middle: 9.53 mm (0.375 in) bottom: 7.62 mm (0.300 in) |  |  |  |

|            | Dimensions                |                      |                       |                                                                               |  |  |  |  |
|------------|---------------------------|----------------------|-----------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Size       | Behind<br>Panel<br>(max.) | Width                | Height                | Display Character<br>Height                                                   |  |  |  |  |
| 1/8<br>(V) | 101.6 mm<br>(4.00 in)     | 54.8 mm<br>(2.16 in) | 100.3 mm<br>(3.95 in) | top: 11.4 mm (0.450 in) middle: 9.53 mm (0.375 in) bottom: 7.62 mm (0.300 in) |  |  |  |  |

| Weight                                       |                                                        |  |  |  |
|----------------------------------------------|--------------------------------------------------------|--|--|--|
| 1/4 DIN (PM4) • Controller: 331 g (11.7 oz.) | 1/8 DIN (PM8&9) • Controller: 284 g (10 oz.)           |  |  |  |
| 1/16 DIN (PM6) • Controller: 186 g (6.6 oz.) | <b>User's Guide</b> • User's Guide: 284.86 g (10.1 oz) |  |  |  |

Modbus® is a trademark of AEG Schneider Automation Inc.

 $\label{eq:thernet} \begin{tabular}{ll} EtherNet/IP^{\tiny TM} is a trademark of ControlNet International Ltd. used under license by Open DeviceNet Vendor Association, Inc. (ODVA). \\ \end{tabular}$ 


UL® is a registered trademark of Underwriters Laboratories Inc.

# $\textbf{DeviceNet}^{\text{\tiny{TM}}} \textbf{ is a trademark of Open DeviceNet Vendors Association.}$

### Note:

These specifications are subject to change without prior notice.

# Ordering Information for PM Integrated Controller Models



155 •

# Index

| IIIuux                                   |                                              |                                               |
|------------------------------------------|----------------------------------------------|-----------------------------------------------|
| <b>R.b.L</b> Alarm Blocking 86, 126      | <b>[.5P]</b> Closed Loop Working Set         | , P. I Input Point 1 69                       |
| RELF AC Line Frequency 91                | Point 54                                     | Input Point 2                                 |
| R.d.L Alarm Delay 86                     | [Ur] Current Read 59                         | <b>P.3</b> Input Point 3                      |
|                                          |                                              |                                               |
| <b>R.JSP</b> Alarm Display 86            | [Urr] Current Menu 59, 87                    | <b>.P.Y</b> Input Point 4 69                  |
| Rh Alarm High Set Point 58,              | [U5E] Custom Menu 45                         | <b>, P, 2</b> Input Point 2 69                |
| 85, 125                                  | <b>GREE</b> Date of Manufacture 110          | Input Point 3 69                              |
|                                          |                                              |                                               |
| ନ୍ନନ୍ତ Alarm Hysteresis 85, 125          | <b>3</b> Dead Band 57, 77, 122               |                                               |
| Analog Input Menu 51, 66                 | <b>♂£</b> Decimal 67, 68                     | <b>.P.5</b> Input Point 5 69, 70              |
| R Implicit Input Assembly 97             | Digital Input/Output Menu                    | P.5 Input Point 6 70                          |
|                                          |                                              |                                               |
| R. 5 Alarm Source Instance 84            | 53, 72                                       | Input Point 7 70                              |
| R.L.R. Alarm Latching 86, 125            | <b>d</b> r Direction 72                      |                                               |
| ALE I ALEZ ALEZ ALEY                     | <b>♂♂.5</b> Digital Output State 53          | ้า <b>ค.ศ</b> Input Point 9 71                |
| Alarm Error 1 to 4 42                    | Day of Week 98                               | <b>P. 10</b> Input Point 10 71                |
|                                          |                                              |                                               |
| RL 9 Alarm Logic 85                      | <b>g.Pr 5</b> Display Pairs 65, 93           | <b>P.F.</b> IP Fixed Address Part 1 95,       |
| AL,h I AL,h2 AL,h3 AL,h4                 | <b>J.と</b> Display Time 93                   | 111                                           |
| Alarm High 1 to 4 42                     | <b>E</b> . <b>P.E</b> Ethernet/IP™ Enable 97 | IP Fixed Address Part 2 95,                   |
| <del>-</del>                             |                                              |                                               |
| ALL I ALL 2 ALL 3 ALL 4                  | E .5 Event Input Status 53                   | 111                                           |
| Alarm Low 1 to 4 42                      | EL .o Electrical Input Offset 111            | <b>P.F.3</b> IP Fixed Address Part 3 95,      |
| <b>ALC?</b> Alarm Menu 58, 84            | EL ,5 Electrical Input Slope 112             | 111                                           |
| R.L. Alarm Low Set Point 58, 85,         | EL o.o Electrical Output Offset 112          | <b>PFY</b> IP Fixed Address Part 4 93,        |
|                                          |                                              |                                               |
| 125                                      | <b>End</b> End 106                           | 95, 96, 111                                   |
| R.L oc Profibus Address Lock 95          | Ent   Active Event Output 1 63               | וף Address Mode 95, 110                       |
| Ronb Implicit Output Assembly 97         | Ent 2 Event Output 2 104                     | P.5 I IP Fixed Subnet Part 1 96               |
|                                          |                                              |                                               |
| R.5d Alarm Sides 85                      | <b>E</b> <u> </u>                            | <b>P.52</b> IP Fixed Subnet Part 2 96,        |
| <b>9.5</b> Alarm Silencing 86, 126       | 42                                           | 97                                            |
| R.5 E Alarm State 59                     | FR L Input Error Failure 79, 120             | P.53 IP Fixed Subnet Part 3 96                |
|                                          | •                                            |                                               |
| <b>R.L 5P</b> Autotune Set Point 55, 78, | F Digital Output Function                    | .P.53 IP Fixed Subnet Part 3 96               |
| 114                                      | Instance 72, 74                              | <b>P.54</b> IP Fixed Subnet Part 4 96         |
| <b>REE</b> Attention 42, 44, 125, 126    | F , Output Function Instance                 | Jump Count Remaining 63                       |
| <b>A.E Y</b> Alarm Type 84, 125          | 81, 83                                       | JL Jump Loop 106                              |
|                                          | •                                            |                                               |
| אַסטב Altitude Units 71                  | F L Filter 67                                | L.dd Open Loop Detect Devia-                  |
| ี <b>ฅบะ</b> Autotune 56, 114            | Fn Function 71                               | tion 79                                       |
| <b>b.Pr</b> Barometric Pressure 72       | Fo Output Function 81, 82                    | L.dE Open Loop Detect Enable                  |
|                                          |                                              |                                               |
| <b>[,R9</b> ] Cool Algorithm 76, 121     | Function Key Menu 90                         | 79                                            |
| [RL] Calibration Menu 111                | <b>3LbL</b> Global Menu 91                   | L.JE Open Loop Detect Time 79                 |
| Cool Output Curve 76, 119                | <b>95</b> Guaranteed Soak Deviation          | L.h.y Limit Hysteresis 75                     |
|                                          |                                              |                                               |
| <b>E.E.</b> Current Error 42, 60, 126    | 92                                           | L.E I Limit Error 1 42                        |
| E.Er I Current Error 42                  | <b>95</b> Guaranteed Soak Deviation          | ፲ ፲ ፲ Limit High 1 42                         |
| [ [ F Display Units 91, 97               | 1 92                                         | <b>L ،ቦባ</b> Limit Menu 53, 74                |
| [h8n] Channel 93                         | <b>95</b> 62 Guaranteed Soak Deviation       | Linearization 66                              |
|                                          |                                              |                                               |
| <b>[[]</b> Current High Set Point 59,    | 2 92                                         | LL.5 Limit Low Set Point 53, 75               |
| 126                                      | <b>95E</b> Guaranteed Soak Enable            | Lnc Linearization Menu 51, 68                 |
| <b>[[]</b> Cool Hysteresis 56, 77, 121   | 92                                           | Lot Security Setting Menu 108,                |
| [.L E d] Communications LED Activ-       | <b>95E</b> Guaranteed Soak Enable            | 110                                           |
|                                          |                                              |                                               |
| ity 93                                   | 92                                           | Locked Access Level 109                       |
| <b>[LLo]</b> Current Low Set Point 59,   | <b>5.89</b> Heat Algorithm 76, 121           | Lock Operations Page 108,                     |
| 126                                      | <b>h.Er</b> Heater Error 42, 60, 126         | 127                                           |
|                                          |                                              |                                               |
| [[Lo[]] Wait for Time 101                | <b>LEr!</b> Heater Error 42                  | Lock Profiling Page 108,                      |
| <b>□ [. [ 7</b> ] Control Mode 55, 81    | <b>h.h y</b> Heat Hysteresis 56, 76, 121     | 109, 110, 127                                 |
| <b>[]</b> Control Mode Active 54         | hours 97                                     | Loop Menu 76                                  |
| [odE] Public Key 110                     | <b>h.Pb</b> Heat Proportional Band 56,       | Loop Loop Menu 55                             |
|                                          | •                                            |                                               |
| [[organizations Menu 93,                 | 76, 114, 122                                 | LP.o I Loop Open Error 42                     |
| 97, 101, 108                             | <b>h.Pr</b> Heat Power 54, 115               | LP.o I LP.o2 Loop Open Error 1                |
| Cool Proportional Band 56,               | Calibration Offset 51, 68,                   | or 2 42                                       |
|                                          |                                              |                                               |
| 77, 114, 122                             | 116–117                                      | Loop Reversed Error 42                        |
| <b>[,Pr</b> ] Cool Power 54, 115         | , d.5 Idle Set Point 56, 80                  | <b>LP,r</b> I <b>LP,r Z</b> Loop Reversed Er- |
| <b>[ [5P]</b> Closed Loop Set Point 56,  | Input Error Latching 67                      | ror 1 or 2 42                                 |
| 80                                       | Input Error Status 51, 68                    | L.5d Limit Sides 74                           |
| 00                                       | LEF Input Entit Status 31, 00                | L.JB LITTIC GIUES 14                          |

| Manual Power 79  Math Menu 60, 88  Minutes 97  Monitor Menu 54  Math Menu 60, 88  Math Menu 60, 88  Math Menu 60, 88  Minutes 63  Math Menu 60, 88  Minutes 63  Math Menu 60, 88  Minutes 63  Minutes 97  Math Menu 60, 88  Minutes 63  Minutes 97  Minutes 97  Math Menu 60, 88  Minutes 63  Minutes 97  Minutes 97  Math Menu 60, 88  Minutes 63  Minutes 97  Minutes 97  Minutes 97  Minutes 97  Minutes 97  Minutes 97  Monitor Menu 54  Monitor Menu 5 | 127  POLL Rolling Password 109  PRAMP Action 80, 123  PI Ramping 42  PI PP Ramping 1 or 2 42  PI PP Ramping 1 or 2 42  PRAMP Ramping 80, 123  PLL RTD Leads 66  PLYP Ramping Type 92  5.68 Sensor Backup Enable 117  5.61 Seconds 63 | LL Valve Travel Time 90  LUn I Tuning 42  LUn I LUn Tuning 1 or 2 42  URL Value to high 42  UFR User Failure Action 79  USc. User Restore Set 93, 114  USc. User Save Set 93, 114  USL P Unused Step 105  URL Value to low 42  LUL Wait For Both 105  LUL Value Tour 2 103  Zon E Zone 93 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output High Power Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>5</b> En Seconds 63 <b>5</b> En Sensor Type 66, 115, 117                                                                                                                                                                          | AC Line Frequency 91, 123                                                                                                                                                                                                                                                                 |
| 73, 82  o.Lo Output Low Power Scale 73, 82  o.L Minimum On Time 89  oP Open Loop Set Point 57, 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5FnB Source Function A 89 5FnB Source Function B 89 5FnB Source Function E 88                                                                                                                                                        | Active Event Output (1 or 2) 63 Active Step 62 Active Step Type 62 adaptive tuning 115                                                                                                                                                                                                    |
| Output Point 2 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5.</b> Scale High 66, 83, 117                                                                                                                                                                                                     | Address Modbus 94                                                                                                                                                                                                                                                                         |
| Output Point 3 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5</b> , R Event Input Source Instance                                                                                                                                                                                             | Address Standard Bus 93, 94, 97                                                                                                                                                                                                                                                           |
| Output Point 4 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 92                                                                                                                                                                                                                                 | Administrator Password 109 Advance Key 41                                                                                                                                                                                                                                                 |
| <b>P.5</b> Output Point 5 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5</b> A Source Instance A 89                                                                                                                                                                                                      | agency approvals 4                                                                                                                                                                                                                                                                        |
| <b>P.5</b> Output Point 6 70 Output Point 7 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Event Input Source Instance B 92                                                                                                                                                                                                     | alarm blocking 126                                                                                                                                                                                                                                                                        |
| o.P.B Output Point 8 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Source Instance B 89                                                                                                                                                                                                                 | Alarm Menu 58, 84                                                                                                                                                                                                                                                                         |
| <b>P.9</b> Output Point 9 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5</b> E Source Instance 88                                                                                                                                                                                                        | alarms 123                                                                                                                                                                                                                                                                                |
| <b>P. 10</b> Output Point 10 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>5.</b> Coale Low 66, 83, 117                                                                                                                                                                                                      | Blocking 86, 126                                                                                                                                                                                                                                                                          |
| o.bb Output Time Base 73, 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5LoC</b> Set Lockout Security 109,                                                                                                                                                                                                | deviation 125<br>Display 86                                                                                                                                                                                                                                                               |
| o EPE Output Menu 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127                                                                                                                                                                                                                                  | Hysteresis 85, 125                                                                                                                                                                                                                                                                        |
| Output Type 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 <sub>n</sub> Serial Number 110                                                                                                                                                                                                     | Latching 86, 125                                                                                                                                                                                                                                                                          |
| Output Value 1 61 Output Value 2 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5</b> <sub>0</sub> <b>R</b> h Soak 105<br><b>5</b> <sub>0</sub> <b>F</b> Special Output Function                                                                                                                                  | Logic 85                                                                                                                                                                                                                                                                                  |
| Output Value 2 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Menu 61                                                                                                                                                                                                                              | process 125                                                                                                                                                                                                                                                                               |
| <b>P.R.d.</b> Profibus Node Address 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Profile Start Step 74                                                                                                                                                                                                                | set points 125                                                                                                                                                                                                                                                                            |
| <b>PRS.R</b> Administrator Password 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>5.5 £ P</b> Profile Start Step 74                                                                                                                                                                                                 | Sides 85                                                                                                                                                                                                                                                                                  |
| <b>PRSE</b> Password Enable 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>5</b> <i>P</i> Active Step 62                                                                                                                                                                                                     | Silencing 86, 126                                                                                                                                                                                                                                                                         |
| PR55 Password 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5. L SP Active Step Type 62                                                                                                                                                                                                          | Source 84                                                                                                                                                                                                                                                                                 |
| PR5.u User Password 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Source Value 1 61                                                                                                                                                                                                                    | Type 84<br>Altitude Units 64                                                                                                                                                                                                                                                              |
| P.J. Peltier Delay 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source Value A 52                                                                                                                                                                                                                    | Analog Input Menu 51, 66                                                                                                                                                                                                                                                                  |
| <b>P.E.E</b> Process Error Enable 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Source Value 2 61 <b>5 ub</b> Source Value B 52                                                                                                                                                                                      | Assembly Definition                                                                                                                                                                                                                                                                       |
| <b>P.E.L</b> Process Error Low 67 <b>P.D</b> Part Number 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5</b> <i>u.E</i> Source Value E 60                                                                                                                                                                                                | Addresses 142                                                                                                                                                                                                                                                                             |
| PoF.R Power Off Level A 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>ERS</b> User Tune Aggressiveness                                                                                                                                                                                                  | Assembly Definition Addresses 129                                                                                                                                                                                                                                                         |
| PoF.b Power Off level B 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                   | Assembly Definition Addresses and                                                                                                                                                                                                                                                         |
| PonR Power On Level A 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>E.R9</b> User Tune Aggressiveness                                                                                                                                                                                                 | Assembly Working Addresses 142                                                                                                                                                                                                                                                            |
| Ponb Power On Level B 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114                                                                                                                                                                                                                                  | Assembly Working Addresses 129,                                                                                                                                                                                                                                                           |
| Pot Power Out Time 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>E.bnd</b> TRU-TUNE+™ Band 78                                                                                                                                                                                                      | 142                                                                                                                                                                                                                                                                                       |
| <b>P.5</b> Profile Status Menu 62 <b>P.</b> E Y P Profile Type 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>E.bnd</b> TRU-TUNE+™ Band 115 <b>E.f</b> Thermistor Curve 67                                                                                                                                                                      | Attention Codes 42, 44                                                                                                                                                                                                                                                                    |
| Punt Pressure Units 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Ed</b> Time Derivative 57, 77, 114,                                                                                                                                                                                               | auto (closed loop) control 120                                                                                                                                                                                                                                                            |
| Pu Process Value Menu 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122                                                                                                                                                                                                                                  | Autotune 114                                                                                                                                                                                                                                                                              |
| PuR Process Value Active 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Ŀ.9</b> ∩ TRU-TUNE+™ Gain 78,                                                                                                                                                                                                     | Autotune Aggressiveness 78                                                                                                                                                                                                                                                                |
| <b>FREE</b> Rate 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 115                                                                                                                                                                                                                                  | Autotune Set Point 55, 78, 114                                                                                                                                                                                                                                                            |
| <b>r.En</b> Remote Enable 55, 78, 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>E</b> , Time 105                                                                                                                                                                                                                  | autotuning 114–115<br>autotuning with TRU-TUNE+™ 115                                                                                                                                                                                                                                      |
| Software Revision 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>E</b> , Time Integral 57, 77, 114,                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                         |
| <b>r.h</b> Range High 67, 83, 84, 118 <b>r.Lo</b> Range Low 66, 83, 117, 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122<br><b>E.ŁUn</b> TRU-TUNE+™ Enable 77,                                                                                                                                                                                            | B                                                                                                                                                                                                                                                                                         |
| rtol Read Lockout Security 109,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115                                                                                                                                                                                                                                  | Barometric Pressure 64                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      | Baud Rate 94                                                                                                                                                                                                                                                                              |

| Blocking 86, 126                                                  | Profile Status Menu 62                                   | Ethernet/IP™ Enable 97                            |
|-------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| bumpless transfer 120                                             | Special Output Function Menu 61                          | Event Output (1 and 2) 104, 105,                  |
| C                                                                 | Setup Page                                               | 106                                               |
| Calibration Menu 111                                              | Alarm Menu 84                                            | Example: Using a Current Trans-<br>former 28      |
| Calibration Offset 51, 68, 84,                                    | Analog Input Menu 66                                     | EZ Key 126                                        |
| 116–117                                                           | Communications Menu 93, 97, 101, 108                     | •                                                 |
| Cascade Control 123                                               | Control Loop Menu 76                                     | F                                                 |
| changing the set point 44                                         | Current Menu 87                                          | Factory Page 107                                  |
| Channel 93                                                        | Digital Input/Output Menu 72                             | Filter Time 67, 117                               |
| chattering output 121                                             | Global Menu 91                                           | filter time constant 117                          |
| chemical compatibility 21                                         | Limit Menu 74                                            | Function 64, 115                                  |
| CIP - Communications Capabilities                                 | Linearization Menu 68                                    | Function Instance 72, 74                          |
| 129                                                               | Math Menu 88                                             | Function Key Menu 126                             |
| CIP Implicit Assemblies 130                                       | Output Menu 81                                           | G                                                 |
| CIP Implicit Assembly Structures                                  | Process Value 71                                         | Global Menu 91                                    |
| 144                                                               | Cool Algorithm 76, 121                                   | Setup Page 49, 64                                 |
| CIP Implicit O to T (Originator to Tar-                           | Cool Hysteresis 56, 77, 121                              | Guaranteed Soak Devia-                            |
| get) Assembly Structure 144 CIP Implicit T to O (Target to Origi- | cool output curve 119                                    | tion 65                                           |
| . , ,                                                             | Cool Output Curve 76, 119                                | Guaranteed Soak Deviation 92                      |
| nator) Assembly Structure 144                                     | Cool Power 54, 115                                       | Guaranteed Soak Enable 65, 92                     |
| Closed Loop Set Point 56, 80                                      | Cool Proportional Band 56, 77, 114,                      | н                                                 |
| Closed Loop Working Set Point 54                                  | 122                                                      |                                                   |
| Common Industrial Protocol 48                                     | Current Error 60, 126                                    | Heat Algorithm 76, 121                            |
| CIP Implicit Assemblies 130                                       | Current Menu 59, 87                                      | Heater Error 60, 126                              |
| Introduction to CIP 48                                            | current sensing 126                                      | Heat Hysteresis 56, 76, 121<br>Heat Power 54, 115 |
| Modifying Implicit Assembly Mem-                                  | Current Sensing 126                                      | Heat Proportional Band 56, 76, 114                |
| bers 130                                                          | D                                                        | 122                                               |
| Common Industrial Protocol (CIP)                                  | Data Map 94                                              | High Power Scale 73, 82                           |
| 48                                                                | Date of Manufacture 110                                  | high range 118                                    |
| communications activity light 41                                  | Dead Band 57, 77, 122                                    | high scale 117                                    |
| Communications Menu 93, 97, 101,                                  | Decimal 67, 68                                           | High Set Point                                    |
| 108                                                               | default Home Page parameters 41,                         | Alarm 58, 59, 85, 86, 87, 125                     |
| Setup Page 49, 64                                                 | 44                                                       | Current 59, 60, 126                               |
| Compact Assembly Class 130                                        | deviation alarms 125                                     | Loop 80, 117                                      |
| Compact Class Assembly Structure                                  | Differential Control 124                                 | Home Page 44                                      |
| 145                                                               | Digital Input Function 91                                | Hours 101                                         |
| Compressor Control 123                                            | Digital Input/Output Menu 53, 72                         | Hysteresis 75, 85, 125                            |
| Control 1 con Many 70                                             | dimensions 16, 17, 18, 19                                | 1                                                 |
| Control Loop Menu 76 control methods 120                          | Direction 72                                             | Idle Set Point 56, 80                             |
| Control Mode 55, 81, 121                                          | Display 86<br>Display Pairs 65, 93                       | Input Error Failure 79, 120                       |
| Control Mode Active 54                                            | displays 41                                              | Input Error Latching 67, 121                      |
| Control Module Menus                                              | Display Time 93                                          | Input Error Status 51, 68                         |
| Factory Page                                                      | Display Units 91, 97                                     | input events 6                                    |
| Calibration Menu 111                                              | Down Key 41                                              | Input Point 1 64                                  |
| Security Setting Menu 108, 110                                    | duplex 118                                               | Input Point 2 64                                  |
| Operations Page                                                   | Duplex Control 124                                       | Input Point 3 64                                  |
| Alarm Menu 58                                                     | E                                                        | Input Point 4 64                                  |
| Analog Input Menu 51                                              |                                                          | Input Point 5 64                                  |
| Current Menu 59                                                   | Electrical Input Offset 111                              | Input Point 6 64                                  |
| Digital Input/Output Menu 53                                      | Electrical Input Slope 112 Electrical Measurement 111    | Input Point 7 64                                  |
| Limit Menu 53                                                     |                                                          | Input Point 8 64                                  |
| Linearization Menu 51                                             | Electrical Output Offset 112 Electrical Output Slope 112 | Input Point 9 64                                  |
| Loop Menu 55                                                      | End 106                                                  | Input Point 10 64                                 |
| Math Menu 60                                                      | End Set Point Value 103                                  | inputs 6                                          |
| Monitor Menu 54                                                   | EtherNet/IP <sup>TM</sup> 35                             | Input Sensor Type 115                             |
| Process Value Menu 52                                             | 5                                                        | installation 20                                   |

| Instance 91 Integrate 76 IP Address Mode 95, 110 IP Fixed Address Part 1 95, 111 IP Fixed Address Part 2 95, 111 IP Fixed Address Part 3 95, 111 IP Fixed Address Part 4 93, 95, 96, 111 IP Fixed Address Part 5 96 IP Fixed Address Part 6 96 IP Fixed Subnet Part 1 96 IP Fixed Subnet Part 2 96, 97 IP Fixed Subnet Part 3 96 IP Fixed Subnet Part 4 96  J Jump Count 103 Jump Count Remaining 63 | Modbus Register Mapping 65 Modbus TCP 35 Modbus TCP Enable 97 Modbus - Using Programmable Memory Blocks 129 Modbus Word Order 94 Modifying Implicit Assembly Members 130 Monitor Menu 54 Motorized Valve Control 124, 137  N navigating Factory Page 107 pages and menus 42 Profiling Page 99 Setup Page 49, 64 No-arc Relay 118 | Power On Level A 65 Power Out Time 65, 92 Pressure Units 64 process alarms 125 Process Error Enable 67 Process Error Low 67 Process Value 51, 64, 68, 71 Process Value Active 54, 55 Process Value Menu 52 Profibus Address Lock 95 Profibus DP 38, 48 Profibus Node Address 95 profile activity light 41 Profile Status Menu 62 Profile Type 92 Profiling Page 99 profiling parameters 100 proportional control |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jump Loop 106<br>Jump Step 103                                                                                                                                                                                                                                                                                                                                                                       | Non-volatile Save 65  O                                                                                                                                                                                                                                                                                                          | plus integral (PI) control 121, 122 plus integral plus derivative (PID)                                                                                                                                                                                                                                                                                                                                          |
| K                                                                                                                                                                                                                                                                                                                                                                                                    | ommon Industrial Protocol (CIP)                                                                                                                                                                                                                                                                                                  | control 122                                                                                                                                                                                                                                                                                                                                                                                                      |
| keys 41                                                                                                                                                                                                                                                                                                                                                                                              | Introduction to CIP 48                                                                                                                                                                                                                                                                                                           | Protocol 93                                                                                                                                                                                                                                                                                                                                                                                                      |
| L                                                                                                                                                                                                                                                                                                                                                                                                    | on-off control 121 Open Loop Detect Deviation 79                                                                                                                                                                                                                                                                                 | Public Key 110                                                                                                                                                                                                                                                                                                                                                                                                   |
| Latching 86, 125                                                                                                                                                                                                                                                                                                                                                                                     | Open Loop Detect Enable 79                                                                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                |
| Level 90<br>Limit Menu 53, 74                                                                                                                                                                                                                                                                                                                                                                        | Open Loop Detection 126                                                                                                                                                                                                                                                                                                          | R                                                                                                                                                                                                                                                                                                                                                                                                                |
| Linearization 64, 66                                                                                                                                                                                                                                                                                                                                                                                 | Open Loop Detect Time 79                                                                                                                                                                                                                                                                                                         | Ramp Action 80                                                                                                                                                                                                                                                                                                                                                                                                   |
| Linearization Menu 51, 68                                                                                                                                                                                                                                                                                                                                                                            | Open Loop Set Point 57, 81 Operations Page 49                                                                                                                                                                                                                                                                                    | Ramp Rate 80, 123                                                                                                                                                                                                                                                                                                                                                                                                |
| Locked Access Level 109                                                                                                                                                                                                                                                                                                                                                                              | ordering information                                                                                                                                                                                                                                                                                                             | Ramp Scale 80, 123<br>Range High 67, 83, 84, 118                                                                                                                                                                                                                                                                                                                                                                 |
| Lock Operations Page 127                                                                                                                                                                                                                                                                                                                                                                             | integrated controller models 155                                                                                                                                                                                                                                                                                                 | Range Low 66, 83, 118                                                                                                                                                                                                                                                                                                                                                                                            |
| Lockout Menu 127                                                                                                                                                                                                                                                                                                                                                                                     | output activity lights 41                                                                                                                                                                                                                                                                                                        | Rate 105                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lock Profiling Page 127                                                                                                                                                                                                                                                                                                                                                                              | output configuration 120                                                                                                                                                                                                                                                                                                         | Ratio Control 124                                                                                                                                                                                                                                                                                                                                                                                                |
| Logic 85<br>Loop Menu 55                                                                                                                                                                                                                                                                                                                                                                             | Output Function 82                                                                                                                                                                                                                                                                                                               | Read 59                                                                                                                                                                                                                                                                                                                                                                                                          |
| Low Power Scale 73, 82                                                                                                                                                                                                                                                                                                                                                                               | Output Menu 81                                                                                                                                                                                                                                                                                                                   | Read Lockout Security 127                                                                                                                                                                                                                                                                                                                                                                                        |
| low range 118                                                                                                                                                                                                                                                                                                                                                                                        | Output Point 2 64                                                                                                                                                                                                                                                                                                                | Real Time Clock 65                                                                                                                                                                                                                                                                                                                                                                                               |
| low scale 117                                                                                                                                                                                                                                                                                                                                                                                        | Output Point 2 64 Output Point 3 64                                                                                                                                                                                                                                                                                              | receiving a remote set point 118 Remote Enable 55, 78, 118                                                                                                                                                                                                                                                                                                                                                       |
| Low Set Point                                                                                                                                                                                                                                                                                                                                                                                        | Output Point 4 64                                                                                                                                                                                                                                                                                                                | restoring user settings 114                                                                                                                                                                                                                                                                                                                                                                                      |
| Alarm 58, 85, 125                                                                                                                                                                                                                                                                                                                                                                                    | Output Point 5 64                                                                                                                                                                                                                                                                                                                | retransmit 119                                                                                                                                                                                                                                                                                                                                                                                                   |
| Current 59, 126                                                                                                                                                                                                                                                                                                                                                                                      | Output Point 6 64                                                                                                                                                                                                                                                                                                                | Retransmit Source 83                                                                                                                                                                                                                                                                                                                                                                                             |
| Limit 53, 75<br>Loop 80, 117                                                                                                                                                                                                                                                                                                                                                                         | Output Point 7 64                                                                                                                                                                                                                                                                                                                | Reverse Bumpless 120                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                                                                                                                                                                                                                                                                                                                                                                                    | Output Point 8 64                                                                                                                                                                                                                                                                                                                | Rolling Password 109                                                                                                                                                                                                                                                                                                                                                                                             |
| М                                                                                                                                                                                                                                                                                                                                                                                                    | Output Point 9 64                                                                                                                                                                                                                                                                                                                | RTD Leads 66                                                                                                                                                                                                                                                                                                                                                                                                     |
| Manual Control Indicator Light 121                                                                                                                                                                                                                                                                                                                                                                   | Output Point 10 64 output power scaling 119                                                                                                                                                                                                                                                                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                |
| manual (open loop) control 120                                                                                                                                                                                                                                                                                                                                                                       | outputs 6                                                                                                                                                                                                                                                                                                                        | saving user settings 114                                                                                                                                                                                                                                                                                                                                                                                         |
| manual tuning 114 Math 65                                                                                                                                                                                                                                                                                                                                                                            | Output State 53                                                                                                                                                                                                                                                                                                                  | Scale High 66, 83, 117                                                                                                                                                                                                                                                                                                                                                                                           |
| Math Menu 60, 88                                                                                                                                                                                                                                                                                                                                                                                     | Output Type 82                                                                                                                                                                                                                                                                                                                   | Scale Low 66, 83, 117                                                                                                                                                                                                                                                                                                                                                                                            |
| Message Action 42                                                                                                                                                                                                                                                                                                                                                                                    | Р                                                                                                                                                                                                                                                                                                                                | Seconds 102<br>secure settings 127, 128                                                                                                                                                                                                                                                                                                                                                                          |
| message, display 42                                                                                                                                                                                                                                                                                                                                                                                  | P3T armor sealing system 4                                                                                                                                                                                                                                                                                                       | Security Setting 108, 110                                                                                                                                                                                                                                                                                                                                                                                        |
| Minimum Off Time 65                                                                                                                                                                                                                                                                                                                                                                                  | Parameter 1 to 20 108                                                                                                                                                                                                                                                                                                            | sensor backup 117                                                                                                                                                                                                                                                                                                                                                                                                |
| Minimum On Time 65                                                                                                                                                                                                                                                                                                                                                                                   | Parity 94                                                                                                                                                                                                                                                                                                                        | Sensor Backup Enable 117                                                                                                                                                                                                                                                                                                                                                                                         |
| Minutes 101, 102                                                                                                                                                                                                                                                                                                                                                                                     | Part Number 110                                                                                                                                                                                                                                                                                                                  | sensor selection 117                                                                                                                                                                                                                                                                                                                                                                                             |
| Modbus Default Assembly Structure 80-119 143                                                                                                                                                                                                                                                                                                                                                         | Password 110                                                                                                                                                                                                                                                                                                                     | Sensor Type 66, 115, 117                                                                                                                                                                                                                                                                                                                                                                                         |
| Modbus - Programmable Memory                                                                                                                                                                                                                                                                                                                                                                         | Peltier Delay 65, 78                                                                                                                                                                                                                                                                                                             | Serial Number 110                                                                                                                                                                                                                                                                                                                                                                                                |
| Blocks 48, 142                                                                                                                                                                                                                                                                                                                                                                                       | percent units indicator light 41                                                                                                                                                                                                                                                                                                 | Set Lockout Security 127                                                                                                                                                                                                                                                                                                                                                                                         |
| ,                                                                                                                                                                                                                                                                                                                                                                                                    | Power Off Level A 65                                                                                                                                                                                                                                                                                                             | set point high limit 117                                                                                                                                                                                                                                                                                                                                                                                         |

| Set Point High Limit Open Loop 81                      | EIA-232/485 Modbus RTU communications 35             |
|--------------------------------------------------------|------------------------------------------------------|
| set point low limit 117                                | high power 25                                        |
| Set Point Low Limit Open Loop 80                       | input 1 process 27                                   |
| Setup Page 64                                          | input 1 RTD 26                                       |
| Sides                                                  | input 1 thermocouple 26                              |
| Alarm 85                                               | input 2 current transformer 27                       |
| Limit 74                                               | input 2 thermocouple 27                              |
| Silencing 86, 126                                      | low power 25                                         |
| single set point ramping 123<br>Soak 105               | Modbus RTU or standard bus EIA-485 communications 34 |
| Software Build 110                                     | output 1 mechanical relay, form C 31                 |
| Software Configuration 132                             | output 1 switched dc/open collector 28, 29           |
| Software Revision 110                                  | output 1 universal process 31                        |
| Source 84                                              | output 2 mechanical relay, form A 33                 |
| Source Function A 65                                   | output 2 no-arc relay, form A 33                     |
| Source Function E 65                                   | output 2 solid-state relay, form A 33                |
| Source Instance A 65                                   | output 2 switched DC/open collector 32               |
| Source Instance E 65                                   | standard bus EIA-485 communications 34               |
| Special Output Function Menu 61<br>System Security 128 | X                                                    |
| Т                                                      | Υ                                                    |
| Target Set Point 101                                   | Z                                                    |
| temperature units indicator lights 41                  | zone display 41                                      |
| Ten Point Linearization 118                            | Zone display 41                                      |
| Thermistor 66                                          |                                                      |
| Time 105                                               |                                                      |
| Time Base 73, 82                                       |                                                      |
| Time Derivative 57, 77, 114, 122                       |                                                      |
| Time Integral 57, 77, 114, 122                         |                                                      |
| TRU-TUNE+™ Band 78, 115                                |                                                      |
| TRU-TUNE+™ Enable 77, 115                              |                                                      |
| TRU-TUNE+™ Gain 78, 115                                |                                                      |
| tuning the PID parameters 114                          |                                                      |
| Type 84, 125                                           |                                                      |
| U                                                      |                                                      |
| Unused Step 105                                        |                                                      |
| Up Key 41                                              |                                                      |
| upper display 41                                       |                                                      |
| User Failure Action 79                                 |                                                      |
| User Password 109                                      |                                                      |
| User Restore Set 93, 114                               |                                                      |
| User Save Set 93, 114                                  |                                                      |
| User Tune Aggressiveness 114                           |                                                      |
| Using EZ-ZONE® Configurator Software 132               |                                                      |
| using the software 127                                 |                                                      |
| V                                                      |                                                      |
| Valve Travel Time 65                                   |                                                      |
| variable time base 122                                 |                                                      |
| W                                                      |                                                      |
|                                                        |                                                      |
| Wait Event (1 and 2) 102, 103<br>Wait For Both 105     |                                                      |
| Wait For Process Instance 102                          |                                                      |
| Wait For Time 101                                      |                                                      |
| weight 154                                             |                                                      |
| weight 154<br>wiring                                   |                                                      |
| digital input or output 5 25, 26                       |                                                      |
| digital input or output 6 26                           |                                                      |

35

# **Declaration of Conformity**

# Series EZ-ZONE® PM



**WATLOW** 

an ISO 9001 approved facility since 1996.

1241 Bundy Blvd. Winona, MN 55987 USA

Declares that the following product:

Designation: Series EZ-ZONE® PM (Panel Mount)

Model Numbers: PM (3, 6, 8, 9 or 4)(Any Letter or number) – (1, 2, 3 or 4)(A, C, E, F or

K) (A, C, H, J or K)(Any letter or number) – (Any letter or number)(A, C,

E, F or K)(A, C, H, J or K) (Any three letters or numbers)

Classification: Temperature control, Installation Category II, Pollution degree 2, IP66 Rated Voltage and Frequency: 100 to 240 V~ (ac 50/60 Hz) or 15 to 36 V= dc/ 24 V~ac 50/60 Hz

Rated Power Consumption: 10 VA maximum PM3, PM6 Models.

14 VA maximum PM8, PM9, PM4 Models

Meets the essential requirements of the following European Union Directives by using the relevant standards show below to indicate compliance.

2004/108/EC Electromagnetic Compatibility Directive

| EN 61326-1                | 2006           | Electrical equipment for measurement, control and laboratory use – EMC requirements (Industrial Immunity, Class B |  |
|---------------------------|----------------|-------------------------------------------------------------------------------------------------------------------|--|
|                           |                | Emissions).                                                                                                       |  |
| EN 61000-4-2              | 1996 +A1,A2    | Electrostatic Discharge Immunity                                                                                  |  |
| EN 61000-4-3              | 2006           | Radiated Field Immunity 10V/M 80–1000 MHz, 3 V/M 1.4–2.7 GHz                                                      |  |
| EN 61000-4-4              | 2004           | Electrical Fast-Transient / Burst Immunity                                                                        |  |
| EN 61000-4-5              | 2006           | Surge Immunity                                                                                                    |  |
| EN 61000-4-6              | 1996 +A1,A2,A3 | Conducted Immunity                                                                                                |  |
| EN 61000-4-11             | 2004           | Voltage Dips, Short Interruptions and Voltage Variations Immunity                                                 |  |
| EN 61000-3-2              | 2006           | Harmonic Current Emissions                                                                                        |  |
| EN 61000-3-3 <sup>1</sup> | 2005           | Voltage Fluctuations and Flicker                                                                                  |  |
| SEMI F47                  | 2000           | Specification for Semiconductor Sag Immunity Figure R1-1                                                          |  |

<sup>&</sup>lt;sup>1</sup>For mechanical relay loads, cycle time may need to be extended up to 160 seconds to meet flicker requirements depending on load switched and source impedance.

2006/95/EC Low-Voltage Directive

EN 61010-1 2001 Safety Requirements of electrical equipment for measurement,

control and laboratory use. Part 1: General requirements

Compliant with 2002/95/EC RoHS Directive

Per 2002/96/EC W.E.E.E Directive Please Recycle Properly.

Winona, Minnesota, USA

Name of Authorized Representative

'

General Manager

Raymond D. Feller III

Title of Authorized Representative

June 2009

Date of Issue

Place of Issue

Signature of Authorized Representative

CE DOC EZ-ZONE PM-06-09

# **How to Reach Us**

## **Corporate Headquarters**

Watlow Electric Manufacturing Company 12001 Lackland Road St. Louis, MO 63146 Sales: 1-800-WATLOW2

Manufacturing Support: 1-800-4WATLOW

Email: info@watlow.com
Website: www.watlow.com
From outside the USA and Canada:

Tel: +1 (314) 878-4600 Fax: +1 (314) 878-6814

#### Latin America

Watlow de México S.A. de C.V. Av. Fundición No. 5 Col. Parques Industriales Querétaro, Qro. CP-76130 Mexico

Tel: +52 442 217-6235 Fax: +52 442 217-6403

### Europe

Watlow France
Tour d'Asnières.
4 Avenue Laurent Cély
92600 Asnières sur Seine
France

Tél: + 33 (0)1 41 32 79 70 Télécopie: + 33(0)1 47 33 36 57

Email: info@watlow.fr Website: www.watlow.fr

Watlow GmbH

Postfach 11 65, Lauchwasenstr. 1

D-76709 Kronau Germany

Tel: +49 (0) 7253 9400-0 Fax: +49 (0) 7253 9400-900 Email: info@watlow.de Website: www.watlow.de

Watlow Italy S.r.I. Viale Italia 52/54 20094 Corsico MI

Italy

Tel: +39 024588841 Fax: +39 0245869954 Email: italyinfo@watlow.com Website: www.watlow.it Watlow Ibérica, S.L.U. C/Marte 12, Posterior, Local 9 E-28850 Torrejón de Ardoz Madrid - Spain

T. +34 91 675 12 92 F. +34 91 648 73 80 Email: info@watlow.es Website: www.watlow.es

Watlow UK Ltd. Linby Industrial Estate Linby, Nottingham, NG15 8AA United Kingdom

Telephone: (0) 115 964 0777
Fax: (0) 115 964 0071
Email: info@watlow.co.uk
Website: www.watlow.co.uk
From outside The United Kingdom:

Tel: +44 115 964 0777 Fax: +44 115 964 0071

### **Asia and Pacific**

Watlow Singapore Pte Ltd. 16 Ayer Rajah Crescent, #06-03/04, Singapore 139965

Tel: +65 6773 9488 Fax: +65 6778 0323

Email: info@watlow.com.sg Website: www.watlow.com.sg

Watlow Australia Pty., Ltd. 4/57 Sharps Road Tullamarine, VIC 3043

Australia

Tel: +61 3 9335 6449 Fax: +61 3 9330 3566 Website: www.watlow.com

Watlow Electric Manufacturing Company (Shanghai) Co. Ltd.

Room 501, Building 10, KIC Plaza 290 Songhu Road, Yangpu District Shanghai, China 200433

China

Phone:

Local: 4006 Watlow (4006 928569) International: +86 21 3381 0188

Fax: +86 21 6106 1423 Email: vlee@watlow.cn Website: www.watlow.cn

ワトロー・ジャパン株式会社

〒101-0047 東京都千代田区内神田1-14-4

四国ビル別館9階

Tel: 03-3518-6630 Fax: 03-3518-6632

Email: infoj@watlow.com Website: www.watlow.co.jp

Watlow Japan Ltd.

1-14-4 Uchikanda, Chiyoda-Ku

Tokyo 101-0047

Japan

Tel: +81-3-3518-6630 Fax: +81-3-3518-6632 Email: infoj@watlow.com Website: www.watlow.co.jp

Watlow Korea Co., Ltd.

#1406, E&C Dream Tower, 46, Yangpyeongdong-3ga

Yeongdeungpo-gu, Seoul 150-103

Republic of Korea

Tel: +82 (2) 2628-5770 Fax: +82 (2) 2628-5771

Website: www.watlow.co.kr

Watlow Malaysia Sdn Bhd 1F-17, IOI Business Park

No.1, Persiaran Puchong Jaya Selatan

Bandar Puchong Jaya

47100 Puchong, Selangor D.E.

Malaysia

Tel: +60 3 8076 8745 Fax: +60 3 8076 7186

Email: vlee@watlow.com Website: www.watlow.com

瓦特龍電機股份有限公司

Watlow Electric Taiwan Corporation

10F-1 No.189 Chi-Shen 2nd Road Kaohsiung 80143

Taiwan

Tel: +886-7-2885168 Fax: +886-7-2885568

### Your Authorized Watlow Distributor

